PHAST (PHAGE ASSEMBLY SUITE AND TUTORIAL):

A WEB-BASED GENOME ASSEMBLY TEACHING TOOL

D. Leland Taylor
Computational Biology
Center for Interdisciplinary Studies

Davidson College

May 6, 2012

Dr. Laurie Heyer
Dr. A. Malcolm Campbell
Dr. Scott Denham

Dr. David Wessner

Funding provided by the Davidson Research Initiative and the Mimms Summer Research
Fellowship. Special thanks to those with the HHMI PHIRE program: Dr. Graham Hatfull, Dan
Russell, Dr. Tuajuanda Jordan, Melvina Lewis, and Dr. Lucia Barker. Thank you to the
Davidson College staff who helped with this project: Bill Hatfield and Paul Brantley. Thanks
to Phillip Compeau for his advice on various genome assembly topics. Finally, special
thanks to my advisors, Dr. A. Malcolm Campbell and Dr. Laurie Heyer, for their guidance
throughout this process!

ii

TABLE OF CONTENTS

N =

1 & W

© 0 N o

ABSTRAC T ..oitirtissrsessssissssssssassssssssssssssssssssssssssssssssssassssssssssssssssssssssssssssssssssnsssessssssssssssssssnsssssssssssssnsssensassssssans 1
INTRODUCGCTION ...utiitressreessssssssasssssssssssssassssssssssssssssssssssssssssssssssassssssssssssssssssssssssssssssssssnsssssssssasssssssssssnssssansns 2
% R 1V (0 1 A7 0] P 3
GENOME SEQUENCING TECHNOLOGYccovirermrersmsersesssessssssnssssasss 6
FUNDAMENTALS OF GENOME SEQUENCINGccceetrmrermsessmsessssessassssanss 13
GENOME ASSEMBLY METHODSctittirtrismsesssssssssssssesssnsssssssnsasssasns 20
5.1 GREEDY ASSEMBLY ALGORITHMS w.ucvtuirreussressssessssessssesssssssssessssesssssssssssssssssssssssssssssssssassssessssasasssssssassssesssssssssssssses 22
5.2 OVERLAP LAYOUT CONSENSUS (OLC) ASSEMBLY ALGORITHMS.....cceuurieurernrernsernsessessessssssssssssssesssessssssssssnes 23
I B 01 o Lo] OO OO OO 24
52,2 LAYOUL ceeteeeieevetve st esasses s es s sas s a5 4555888505458 26
IV T 00 11 X211 K17 K 29
524 OLC VS GIre@dy ASSEMDBLY ...cueeeseereetreseteeseevssesssesissasisss s ssssssssssssssassssssssssssssssssesassssassssisssssssssssssssassssansssenss 30
IV T ATV 7Y U= R = 171 £] =) o 30
5.3 DE BRUIJN ASSEMBLY ALGORITHMS ...vuviuiriresesssssssssssscssssssssssssssasssssssssssssss s s sssssssssssss s sesssssssssssssas s s sassneas 31
5.4 MIMICKING INTELLIGENT READ ASSEMBLER (MIRA) ..ottt seieseesseesessesssesssesssssssssssssesssssssesssssssssasesans 39
LR T 010 (00 10 £ (0] [44
RESULTS c.uutittisssesssssssssssssssssssssssssssessssssssssssssssnsssssssssssssssssssssssssssssssnsssssnsssssssnsssssssssssanssssssensssssnssssssansasssanns 45
CON CLUSIONS ... ciiotistresssnsssssssnsssssnssssssansasssassns 48
REFERENUCES ...cueiietitrisssssssssssssssssesssnssssssssss sansssssssnsnsssnsssssssnsasssasns 50
APPENDIX 1: CODEocvictrsesssisessssssessssssssssssssssssssssssssssssnsssssssssssssssssssssssssssnssssssnsssssssssssssnsssssssssssssnssssssanss 57

iii

1 ABSTRACT

Next generation sequencing technologies have greatly reduced the cost of
sequencing genomes. With the current sequencing technology, a genome must be broken
into sections and then sequenced, producing “reads.” A computer pieces these reads back
together in a process known as genome assembly. PHAST (Phage Assembly Suite and
Tutorial) is an online set of modules designed to teach the genome assembly process. The
website includes tutorials detailing the complexities of genome assembly and allows users
to assemble small phage genomes of their own. With PHAST, entry-level biology students
learn concepts that affect genome assembly (coverage, read lengths, read errors, etc.) and
come to appreciate the use of mathematics and graph theory to solve biological problems

such as the genome assembly problem.

2 INTRODUCTION

As defined by the National Institutes of Health (NIH), computational biology is the
“development and application of data-analytical and theoretical methods, mathematical
modeling and computational simulation techniques to the study of biological, behavioral,
and social systems” (Huerta et al., 2000). Modern scientific tools, such as genome
sequencing and microarray analysis, produce overwhelming amounts of data that make
manipulating, storing, and interpreting such data difficult. To meet these challenges, the
field of computational biology blends mathematics, biology, and computer science into a
single area of study. Through computational biology, scientists develop the methods, tools,
models, and skills required to facilitate scientific inquiry in a data saturated world.

Genome assembly is a sub-field of computational biology in which scientists focus
on building tools and methods to solve the genome assembly problem. Modern DNA
sequencers produce gigabytes of data per run. These data are the sequences of small DNA
fragments called “reads.” The genome assembly problem is to correctly stitch these
gigabytes of reads together to form a genome. Computational biologists have approached
the genome assembly problem in a variety of ways; however, the most successful
approaches are based on graph theory. Mathematical methods developed to construct
theoretical graphs, store graphs in computer memory, and efficiently traverse graphs are
now frequently used to solve the problem of decrypting an organism’s genome, thanks to
computational biologists.

As a capstone to my undergraduate study in computational biology, I designed a

website, called PHAST (Phage Assembly Suite and Tutorial), to teach undergraduates about

the genome assembly process. PHAST includes tutorials detailing complex issues in
genome assembly and allows users to assemble small genomes of their own based on some
choices they can make. Because PHAST describes many of the issues included in this thesis,

some of the text in this document is very similar to the PHAST tutorials.

2.1 MOTIVATION

[was motivated to produce PHAST to fill a void in the national genomics education
program called Phage Hunters Integrating Research and Education (PHIRE), funded by the
Howard Hughes Medical Institute’s (HHMI) Science Education Alliance (SEA). PHIRE
engages young scientists in authentic research by identifying and isolating
mycobacteriophages (called “phages”) - viruses that infect Mycobacterium smegmatis
(Phanning the Phlames, 2012). PHIRE is a yearlong curriculum that targets first year
undergraduates and students who are often left behind in genomics curriculum
innovations. In the first semester, students follow a series of lab protocols to isolate and
characterize phages from local soil samples of their choosing. Over winter break, genomes
of a few phages from each institution are sequenced at a sequencing facility. In the second
semester, students receive a fully assembled genome, which they annotate and compare to
other phage genomes (Mycobacteriophage Database, 2012). To date, the PHIRE program
has been very successful - reaching students at 97 institutions (Mycobacteriophage
Database, 2012), as well as producing several papers (Hatfull et al, 2006; Pope et al, 2011).

The depth in which PHIRE institutions explore genome sequencing and assembly
varies. Some PHIRE institutions detail the next generation sequencing and assembly
process, and even have their own sequencing facilities available to the institution’s PHIRE

program. In general, most institutions use video tutorials provided on the PHIRE website

that describe the overall sequencing workflow (Mycobacteriophage Database, 2012). These
video tutorials are informative and useful, but primarily describe how to manually edit and
validate a genome assembly. PHIRE offers little information on the process that produced
the genome assembly or the complexities and frequent complications associated with the
genome assembly problem.

PHAST builds on PHIRE’s model of an interactive learning process and is a “one-
stop” teaching tool where students learn about the genome assembly process in an
interactive environment. To that end, PHAST is designed as a website to allow simple,
cross-platform availability with no installation required on the user’s computer. The only
available alternative requires the installation of a virtual Linux machine and familiarity
with UNIX, which is beyond the capacity of most biology faculty. At the PHAST web site,
each user can assemble selected genomic data (raw output of high-throughput sequencers).
After assembly, a user’s genomes are available on every page of the site, along with basic
statistics on each assembly. No other user has access to these genomes, so each student
must do the work for him or herself. Once two or more genomes are assembled, a user can
compare the structure of different assemblies using a fully integrated platform-and
browser-independent dotplot comparison tool.

Phage genomes are ideal for PHAST, given the computational requirements of a
web-based assembly tool. The genome assembly process is very time consuming and can
take days to assemble a complicated, large, eukaryotic genome on a powerful, dedicated
computer (Miller et al., 2008). Because PHAST is web-based, it needs to be able to perform
several assemblies at once, which is not feasible with complex genomes, even on a super

computer. However, phage genomes are small, ranging from 41,441 to 164,602 base pairs,

and have little genomic complexity, such as repetitive sections of DNA (Mycobacteriophage
Database, 2012). These properties make it feasible to assemble multiple phage genomes at
once on a standard web server. Using a MacPro3 computer with two 2.8 GHz Quad-Core
Intel Xeon processors and 4 GB 800 MHz of DDR2 RAM, most phages in the PHAST
database take no more than several hours to completely assemble. For these longer

assemblies, PHAST has an email feature that will email a user when an assembly is finished.

3 GENOME SEQUENCING TECHNOLOGY

The term “genome” refers to all genetic material in viruses, prokaryotic cells, and
eukaryotic organelles. In haploid organisms, the term refers to the genetic material in a
haploid set of the organism’s chromosomes (Russell, 2010). Sequencing is the process of
reading or decoding the nucleotides of the DNA (or RNA) composing a genome. The
genome sequencing process can be divided into three general steps (1) sequencing, (2)
finishing, and (3) annotating (Campbell and Heyer, 2007). In the sequencing process,
genomic DNA is isolated from the target organism, read by a sequencer, and converted into
digital information that can be stored on a computer. Because current sequencing
technologies read at most a few thousand contiguous base pairs and the smallest known
genome of a cellular organism is 159,662 base pairs (Nakabachi et al., 2006), a genome
must be broken up and sequenced in small segments (even a small Mycobacteriophage is
roughly 40,000 base pairs). The resulting digital information of sequenced nucleotides are
called reads. Through computer programs, these reads are assembled into a genome.

The goal of a genome-sequencing project is to obtain a digital copy of the target
organism'’s genomic DNA in the exact order it appears inside the target genome. Genomes
that contain at most 1 error per 10,000 bases are considered finished genomes (Campbell
and Heyer, 2007). Due to inherent sequencing errors and the complexity of the target
genome, the results of a first sequencing run are rarely this similar to the actual target
genome - especially for eukaryotic organisms. Such genomes are described as draft
genomes and inevitably have DNA inversions, insertions or deletions (indels), and

incorrect base determination when compared to the target organism’s actual genome.

Fixing these sequencing errors is very expensive, requiring many hours of work by highly
trained technicians. Because of the cost, most genomes are never finished and remain in a
draft form.

Genome annotation is the final stage of a genome-sequencing project. Annotation
involves identifying functional segments of DNA in the genome. Often, these segments are
genes, but they may also be intergenic regions that perform some other function such as
gene regulation (Campbell and Heyer, 2007).

Until 2005, most DNA sequencing reads were generated by Sanger technology,
published by Dr. Fred Sanger in 1977 (Perkel, 2009). Sanger sequencing, also called
dideoxy sequencing, utilizes dideoxynucleotides (ddNTP’s) that have a hydrogen molecule
on the 3’ carbon instead of a hydroxyl group (Figure 1). The absence of a 3’ hydroxyl group
prevents the addition of more nucleotides on a DNA strand (Wilton, 2002). Adding
fluorescently or radioactively labeled ddNTP’s to a DNA synthesis reaction using the target
DNA as template DNA will produce a pool of DNA molecules in which some molecules
terminate at every position along the target DNA (Perkel, 2009). The target DNA sequence
is determined by separating the pool of DNA molecules by size and reading the labeled
ddNTP at each position. Originally, this process was accomplished using slab
polyacrylamide gel electrophoresis; however, modern machines use capillary gel
electrophoresis (Kim et al,, 2008). Sanger sequencing is very accurate but expensive and
requires a significant amount of human oversight, as DNA must be cloned and maintained
in cell libraries (Perkel, 2009). The high cost and slow pace of Sanger sequencing made it

unsuitable for sequencing entire genomes.

Deoxynucleotide H Dideoxynucleotide —>® H

Figure 1. Nucleotide molecules. 1A: A regular deoxynucelotide (ANTP) molecule. DNA can
elongate. 1B: A dideoxynucleotide (ddNTP) molecule. DNA elongation halts.

Over the last few years, interdisciplinary teams of investigators have developed new
sequencing technologies, dubbed “next generation sequencing technologies”, or next-gen
technologies. These next-gen technologies are much faster and less expensive than Sanger
sequencing through massive parallel processing, by which millions of DNA fragments are
immobilized and sequenced simultaneously (Pop, 2009). However, next-gen technologies
produce shorter read lengths, are less accurate for an individual read, and have other
complications specific to the sequencer that are not present in Sanger sequencing.
Fortunately, these problems can be solved. The high speed and low cost of these
technologies make it possible to sequence each nucleotide many times, which improves the
overall accuracy through redundancy. In addition, scientists have developed assembly
algorithms optimized for use with short read lengths. Ultimately, the increased capacity
and low cost of second-generation methods make them ideal for whole genome sequencing
projects.

As of 2012, the DNA sequencer market is filled with various platforms, each
sequencing DNA in a different manner. Sequencers such as 454 (DNA sequencing - the 454
method, 2011), [llumina (DNA sequencing - the Illlumina method, 2011), and Helicos (tSMS

How It Works, 2008), use a DNA polymerase-based approach, where DNA polymerase

activity is systematically halted and measured (Mardis, 2008). The Helicos platform can
almost be described as “Sanger sequencing 2.0,” since it uses fluorescently labeled,
reversible terminators to pause, record, and re-initiate base by base sequencing (Perkel,
2009). The significant difference is that rather than analyzing populations of molecules,
Helicos evaluates single molecules. Life Technologies’ lon Torrent (lon Torrent technology,
2012) platform measures the release of hydrogen molecules as DNA polymerase
incorporates nucleotides, and Life Technologies’ SOLiD (Sequencing by Oligo Ligation and
Detection; 5500 Series SOLiD Sequencers, 2011) platform employs DNA ligase to sequence
through the hybridization and ligation of known, fluorescently labeled 8-mer
oligonucleotides to template DNA (Mardis, 2008). All of these technologies generate reads
that range from 50 base pairs up to 1,000 base pairs in length. The goal in all technologies,
though, is to produce longer reads.

Other companies have taken a different approach by sacrificing massive parallel
processing for more accurate, ultra long reads (thousands of base pairs long). Pacific
Biosciences’ sequencer (Introduction to SMRT Sequencing, 2010) measures DNA
polymerase activity and records fluorescently labeled bases as they are incorporated in
real time. ZS Genetics’ platform (Reading and Analysis, 2012) uses an entirely different
approach by directly reading a DNA sequence through transmission electron microscopy
(Perkel, 2009). Finally, Oxford Nanopore Technologies uses nanopores to directly sequence
DNA through electronic analysis of one base at a time as DNA polymers are forced through
a tiny channel (Nanopore Sensing, 2012). In short, DNA sequencing technology is rapidly
improving and expanding. Some scientists are refining older technologies, while others are

developing completely novel technologies.

The next-gen technology most relevant to PHAST is the pyrosequencing technology
used by Roche’s 454 sequencers, because 454 sequencers produced the majority of Phage
Hunter phage genomes. Pyrosequencing (Principle of Pyrosequencing Technology, 2012)
gets its name from the pyrophosphate molecule (Figure 2). Pyrophosphate is a natural
byproduct produced when DNA polymerase adds a nucleotide to a growing DNA strand. By
enzymatically converting pyrophosphate to ATP, which powers light production through
luciferase, pyrosequencing generates bursts of light for each base added (Margulies et al,

2005).

Polymerase

PPi

Figure 2. DNA elongation and the pyrophosphate molecule. When a deoxynucelotide
triphosphate (dNTP) is incorporated, its molecular structure changes to a deoxynucelotide
monophosphate (ANMP) and releases a pyrophosphate (PPi) molecule.

Pyrosequencing begins by breaking the template DNA into fragments and attaching
common DNA adaptors to each end of all of the fragments (Figure 3A). These adaptors
correspond to millions of oligomers attached to the surface of hundreds of thousands of
agarose beads (Mardis, 2008). The DNA fragments are ligated to agarose beads such that

most beads house a single DNA fragment. Next in emulsion PCR (emPCR), single beads are

captured in water droplets (Figure 3B) that are suspended in synthetic oil and act as PCR

10

micro reactors. After emPCR amplification, each bead contains millions of identical DNA

fragments (Figure 3C).

g

Figure 3. The first steps of 454 pyrosequencing. 3A: Adaptors (red and blue) are attached
to DNA fragments. 3B: A DNA fragment is ligated to an agarose bead with oligomers
corresponding to the adaptor sequence. These fragments are captured in water droplets.
3C: The DNA is amplified, the emulsion is broken, and the clonal DNA fragments are
denatured.

The DNA-coated beads are loaded into the wells of a PicoTiterPlate (PTP) that are
attached to fiber optic strands (Perkel, 2009). The PTP is placed in the sequencer and acts
as a flow cell for the pyrosequencing light reaction. The pyrosequencing method sequences
the template DNA by measuring the light intensity produced by a series of reactions
whenever a nucleotide is added to the complementary DNA strand. Each nucleotide is
washed over the PTP in a closely regulated series of steps. When a nucleotide is
incorporated into the DNA strand attached to a particular bead, a camera reads the flash of
light. This light flash is proportional to the number of bases added, so that the light
intensity from two bases added in a row is twice as intense as the light from a single base
added (Perkel, 2009). The light information is captured in recorded into a flowgram, which

is a data structure that stores the light intensities of each base as it flows over a well of the

PTP plate (Figure 4; Margulies et al, 2005). Using this system, the most recent 454 GS FLX+

11

platform is capable of producing quality reads up to 1,000 base pairs in length. Because
454 uses adaptors, cleaning reads of any vestiges of adaptor sequences is a crucial step in

the sequencing process using 454 data.

Number of Bases - Read

TACGCTACGCTACGCTACCTACCTACCTACCTACCTACCTACCTACCTACCTACCTACGCTACGCTACGCTACGTACGTAC
75C

A

Figure 4. A 454 flowgram of a read from the timshel phage. Screenshot taken from the GS
De Novo Assembler (Newbler).

12

4 FUNDAMENTALS OF GENOME SEQUENCING

There are three strategies used to sequence entire genomes: (1) whole genome
shotgun, (2) hierarchal genome shotgun, and (3) pooled genome indexing (Kim et al,
2008). Hierarchal genome shotgun is very time consuming and expensive because it
involves mapping the genome using bacterial or yeast vector libraries (Campbell and
Heyer, 2007). Pooled genome indexing is a hybrid approach that combines hierarchal
genome shotgun and whole genome shotgun. Of the three, the most common and cost
effective method is whole genome shotgun (WGS) sequencing. In WGS, multiple copies of
genomic DNA are broken into millions of random fragments. These fragments are
sequenced individually and their DNA sequences are electronically “stitched” back together
into the genome through a process called assembly. Assembly is extremely complicated
because there are missing DNA segments (gaps), errors in nucleotide identification, and
long segments of repeated nucleotides, making it difficult to assemble the final genome.

As an analogy for WGS sequencing, imagine three copies of the same novel, printed
in a foreign language. Because most novels are at least 40,000 words, which corresponds
nicely to the number of base pairs in a small phage genome (Nebula Awards, 2009), each
word in the novel represents a nucleotide in the genome. Every page of each of the three
novels has been randomly cut into thousands of horizontal strips, and some of the strips
are missing. Furthermore, suppose each of the three copies of the novel has random typos
throughout, in different places in each copy. The assembly task is to arrange the thousands
of strips of paper from all three novels to assemble a single copy of the original book

(Figure 5).

13

This is an

analogy

for genome
assembly.

This page is a
will be

torn into
horizontal
strips.

Y4: N

This is an

-

Figure 5. Genome assembly novel analogy. 5A: Three copies of the same novel. 5B: An
example of one page out of the novel. All pages will be randomly cut into strips of
characters. Note that there are random typos and errors throughout each novel. 5C: A few
strips of characters from one page. 5D: All of the strips of characters from the 3 novels. 5E:
Every single strip from 5D must be assembled as shown here to create a single copy of the
novel. Note that some of the strips are also missing, further complicating this process.

Critical to the genome assembly process is genome coverage. Genome coverage
refers to the ratio between the cumulative size, in nucleotides, of a set of reads and the size
of the genome. For example, a dataset with 1 million reads of 100 nucleotides each that
perfectly samples a 4 million base pair genome has 25-fold coverage (100 million nt

sequenced/4 million bp in the genome = 25x coverage).

14

No sequencing technology is perfect and each sequencing technology has different
error rates. Technologies can misread a nucleotide or skip a nucleotide altogether.
However, with high coverage, a computer or person can more accurately deduce the
correct genome sequence based on the consensus of the majority of the smaller reads
(Figure 6). Because each nucleotide of each read in an overlap effectively casts a single vote
for the final sequence, the final, assembled genome is often referred to as the “consensus

sequence.”

ATGGCATTGCAA
TGGCATTGCAATTTG
AGATGGTATTG
Reads GATGGCATTGCAA
GCATTGCAATTTGAC
ATGGCATTGCAATTT
AGATGGTATTGCAATTTG

Consensus
Sequence AGATGGCATTGCAATTTGAC

Figure 6: The consensus sequence is determined by the majority of reads. The green C
appears in the majority of reads, suggesting the red T is an error. Therefore, the consensus
sequence contains a C instead of a T.

Greater genome coverage produces a better genome assembly (Figure 7) just as
having more books torn into strips would make it easier to assemble the original novel.
High coverage gives the assembly algorithm the ability to identify raw reads that overlap
with each other. Using the book analogy again, 25-fold coverage would be like having 25

novels cut into strips instead of only 3 novels. With more novels, the likelihood of

identifying strips of paper that overlap, fill in gaps, correct for typos, and cover the entire

15

text increases. In other words, with greater genome coverage, assembly algorithms are able

to do a better job of reconstructing the genome.

Multiple Copies of a Genome

High Coverage Low Coverage

Consensus Sequence

Figure 7. Genome coverage and the assembly process. Multiple copies of a genome are
randomly broken into small fragments. Pieces of these DNA fragments are sequenced,
generating reads. Reads are combined in areas they overlap. Portions of the genome in
which many reads overlap are said to have high coverage (green bar). Portions in which
few reads overlap are said to have low coverage (red bar). The majority of the reads form
the final consensus sequence (see Figure 6). The higher the coverage of a consensus
sequence segment, the more confidant you can be in the accuracy of that segment.

Most genome assembly software packages combine several steps in the assembly
process surrounding the actual assembly step. In general, this workflow follows (1)
trimming vector sequences, (2) fragment assembly, (3) assembly validation, and (4)
scaffold generation (Kim et al., 2008).

[t is extremely important to trim any vestiges of vector sequences that may have
been introduced during the sequencing process. For example, during the 454 sequencing

process, the DNA fragments carry short DNA sequence adaptors. These adaptor sequences

are often included within the raw read output and must be trimmed off electronically

16

(Chevreux, 2010). Additionally, labs sequencing multiple genomes use DNA tags, called
Multiplex Identifier (MID) tags, to track each individual genome by identifying a specific
genome in the 454 workflow (Chevreux, 2010). Each project uses a unique MID tag and
these sequence tags are part of the raw read output. In both cases, these DNA tag sequences
complicate the assembly because they produce false overlapping segments of DNA that can
lead to erroneous contig formation.

Fragment assembly involves the actual assembly of the raw shotgun fragment data
into contigs. Contigs are contiguous sequences of DNA based on overlapping sections of
DNA (Figure 8A). In the book analogy, a contig would be a page stitched together based on
areas where the random paper strips overlapped (Figure 8B). Longer reads make it easier
to assemble the consensus contig. Growth of the contig continues as long as quality

overlaps exist between raw reads.

A
' contigs are contiguous sequences of DNA
contigs _are_ ntigu ences__
Character - - .
Fragments re_conti us_se es_of DNA
guous_sequen
B

Contig

Sequenced DNA

Fragments — —
— I A

Figure 8. Contig formation. 8A: Creating a contig (orange) from line fragments (black). 8B:
Creating a contig (orange) from genome reads (black). Bars represent DNA sequences.

Before proceeding to the scaffolding process, contigs should be verified. Contigs may
be incorrect due to the repeat structure of the target genome. Repeats may occur many

times within a genome, possibly as a result of transposable elements, genetic duplications,

17

or prophages (Wetzel et al., 2011). Repeat length varies from short tandem repeats, such as
AAAAAAAA or ACACACACA, to long DNA stretches thousands of base pairs (Wetzel et al,
2011). The best way to verify contigs is through wet-lab experiments and various mapping
techniques; however, the cost and time of such experiments make them impractical for
many sequencing projects. Instead, statistical analyses are often used to identify
misassembled regions. For example, the Celera Whole Genome Assembler uses an A-
statistic to compute the probability of the distribution of read fragment start points in a
contig. If the A-statistic is greater than 10, the contig is deemed “correct” (Kim et al., 2008).
Small, simple genomes that lack large repetitive DNA sections can often be
assembled using only the contig formation process. For larger, more complex genomes, an
additional step called scaffolding is needed. Scaffolds are generated by assembling contigs,
ordered (first to last) and oriented (facing left or right) with respect to one another and the
physical genome. In order to generate scaffolds, additional information on the target
genome is needed. Most crucial is mate-pair information!, where segments of DNA of a
known size are sequenced on both 5’ and 3’ ends (Mate Pair Sequencing, 2012). Because
the physical genomic distance between these sequences tags is known, these data can be
used to distance contigs that contain each tag. For example, if a 2 kb fragment of a genome

were sequenced 100 bp on each end, then these reads and the contigs containing them

1 Mate-pair information is sometimes called paired-end information; however, in reality the
two refer to different protocols. They produce similar information - the distance between
two sequences. Mate-pair insert size ranges from 2 - 5 kb (Mate Pair Sequencing, 2012),
and is generally used for scaffolding. [llumina makes mate-pairs by taking a large DNA
fragment, cutting the middle out, ligating the ends together, and sequencing the ends of the
large fragment with the paired-end protocol. Paired-end insert size is much smaller,
generally 200 - 500 bp in size (Paired-End Sequencing, 2012). lllumina refers to paired-
end as the protocol for sequencing both ends of an actual DNA fragment (without cutting
out the middle).

18

should be roughly 2 kb apart (the actual mate pair protocol is slightly more complex than
described). Some scaffolding algorithms, such as GigAssembler, make use of other
information such as physical genome maps, genetic genome maps, and expressed sequence
tags (EST) in addition to mate-pairs (Kim et al, 2008). All this additional information is
used to order and orient contigs in an attempt to piece together scaffolds. In many

assembly projects, a finished genome is the result of filling in gaps between scaffolds.

19

5 GENOME ASSEMBLY METHODS

There are two basic fragment assembly approaches: a reference-based approach,
and a de novo approach. In a reference-based, or comparative, assembly, the raw reads of
the genome being assembled are compared to an established reference genome sequence
as an assembly guide. Reference-based assembly is fast and uses less computational power
than de novo assembly. However, reference genome assembly may introduce a bias and is
only appropriate if a good reference genome is available. A reference genome should be the
genome of a closely related species, such as a different strain of the same bacteria (Pop,
2009). In many cases a reference genome is not known at the time of assembly.

When an appropriate reference genome is not available, scientists use the de novo
(i.e, done from scratch) assembly process. De novo assembly takes longer and uses more
computational resources, but is the only option for genomes with no suitable reference
genome. Within the category of de novo assembly, investigators use one of three possible
methods: (1) the greedy method, (2) the overlap layout consensus (OLC) method, and (3)
de Bruijn graph method. The greedy method joins a sequence read with another read that
has the best overlap score until no more reads can be joined. The OLC method generates a
directed graph using reads and overlaps. The nodes (circles) of the graph are reads, and the
edges (arrows) represent an overlap of variable length between the suffix of the source
node (arrow tail) and the prefix of the destination node (arrow head). In this way, the
assembly process becomes synonymous with finding a path through the graph that visits
every node exactly once (Figure 9B; edges not labeled, overlap of at least 2 nt). Finally, the

de Bruijn method constructs a graph similar to the OLC graph. Roughly speaking, in a de

20

Bruijn assembly graph the edges are unique subsequences of length k within the reads, and
the nodes represent common k - 1 subsequences (section 5.3). Thus, the assembly
algorithm becomes finding a path in the graph that visits every edge at least once (each

node may be visited more than once; Figure 9C).

A TGGCA B TGCAAT
GCATTGCAA
Reads TGCAAT GCATTGCAA ANTTGAC
CAATT o
ATTTGAC CAATT Qv(“
R
Consensus -
Sequence TGGCATTGCAATTTGAC TGGCA g
L&
TGG TGC e
Utera ™ ™ frec
G O
GGCA GCA A 5 />>(§\
GCqT AT il J
% CATT(am [
C % IS
CAA ?‘v

CAZP (anr
Figure 9. Reads and two possible assembly graphs. 9A: Hypothetical reads aligned to the
consensus sequence. 9B: An OLC assembly graph created from these reads. Edges represent
overlaps of 2 or more nt. The assembly process is to visit every node. 9C: A simplified de
Bruijn assembly graph created from these reads. Edges represent 4 nt segments with 2 nt
overlap between the nodes. The assembly process is to visit every edge.
In both the OLC and de Bruijn assembly methods, it might be possible to traverse

the graph in more than one way, representing different genome arrangements. Although de

novo assemblies use one of the three methods described above, different investigators have

implemented their method of choice with slight variations. These variations can produce

21

different outcomes, so that even though two assembly programs may both use an OLC

approach, for example, their output could be quite different.

5.1 GREEDY ASSEMBLY ALGORITHMS

The first de novo assembly algorithms were greedy assembly algorithms. Greedy
assembly algorithms begin by calculating pairwise alignments of all read fragments. These
alignments are scored, usually based on the length of the overlap and the percentage of
matching bases (Pop, 2009). The two reads with the highest scoring overlap are merged
together, and the resulting “contig” is added to the pool of sequences (Narzisi and Mishra,
2011). The operation of extending a contig continues until no more quality overlaps exist
(Miller et al,, 2010).

Greedy assembly algorithms are called “greedy” because they optimize a local
objective function - the quality of overlaps between reads (Pop, 2009). Inherent to this
approach is a tendency to get stuck at local maxima, instead of identifying a globally
optimal solution (Miller et al., 2010). For example, because greedy assemblers process
reads based on the highest scoring overlap, they may incorporate a read into one contig
that should have been incorporated into another, especially when dealing with repeats

(Figure 10; Pop, 2009).

U

Figure 10. An incorrect greedy fragment assembly of reads. 10A: Correct assembly of
reads. Orange segments are repeats. 10B: Assembly of reads using greedy fragment
assembly.

22

Early greedy assemblers, such as TIGR and CAP3, were optimized for Sanger data
and followed the algorithm previously described. More recent greedy assemblers, such as
SSAKE, SHARCGS, and VCAKE, are optimized for short-reads and vary slightly from the
earlier greedy algorithms. These short-read greedy assemblers begin by selecting an
unassembled read as a seed for contig formation. This contig is extended from the 3’ end
and then from the 5’ end of the reverse complement contig sequence (Pop, 2009). The
extension process continues as long as the extension reads, that overlap the contig
sequence, lack many sequence differences (Figure 11). In general, these stringent extension
requirements avoid misassembles, but produce small contigs, only a few kilobases in length

(Pop and Salzberg, 2008).

| contig

l/
T~

Figure 11. A repeat boundary. The black/blue and red/blue lines represent two reads.
These reads overlap with the contig (blue sections), but do not overlap beyond the contig
(red and black sections). The contig cannot be extended because the reads that would
extend the contig do not agree.

5.2 OVERLAP LAYOUT CONSENSUS (OLC) ASSEMBLY ALGORITHMS

Overlap layout consensus (OLC) is a popular method used for de novo genome
assemblies. OLC requires three steps: (1) overlap, (2) layout, and (3) consensus. The
overlap stage computes and builds the basic assembly graph. The layout stage compresses
the graph, and the consensus stage determines the genome sequence based on the graph

generated in the previous two steps.

23

5.2.1 Overlap

A basic, simplistic overlap algorithm compares the sequence of each read to that of
every other read, in both the forward and reverse complement orientations. Using such a
method makes overlap computation a very time intensive step — especially if the set of
reads is very large. For example, the whole genome shotgun assembly of Drosophila had
about 3 x 106 reads of 500 bases, requiring roughly 1013 pairwise comparisons (Deonier et
al, 2010). Even on today's computers, running that many comparisons is impractical, so
scientists developed ways to decrease the number of comparisons by using seeded
algorithms, like those behind NCBI's BLAST (Basic Local Alignment Search Tool). In seeded
algorithms, short, unique, fixed-length sequences of DNA, called k-mers, are used to identify
reads that share potential overlap. For example, ATGC would be a 4-mer (k = 4). If two
reads share a k-mer, these reads likely share an overlap, so the algorithm takes the time to
calculate the overlap between the reads (Schatz et al., 2010). Even with seeded algorithms,
the overlap computation step remains expensive in both time and computational
resources. With these faster methods and a computer that could make 32 million read
comparisons per second, the Drosophila project required multiple processors and parallel
computing (Myers et al., 2000). Furthermore, with modern sequencing technology, many
more reads are generated, requiring more comparisons, making the overlap step difficult
even for super computers, simply due to the large quantities of data generated through
sequencing.

Different OLC algorithms have different criteria for OLC-quality overlaps. For
example, the Celera Assembler, one of the first OLC programs, defines read overlaps of at

least 40 nucleotides with least 94% similarity as quality overlaps and adds these overlaps

24

as edges in the assembly graph (Myers et al., 2000). The OLC overlap criteria result in two
types of overlaps: true overlaps (Figure 12A) and repeat overlaps (Figure 12B). For
example, in figure 12B, an overlap occurs between reads S and T, due to the orange repeat
section, not because reads S and T truly overlap one locus in the genome, as in figure 12A.
Ideally, repeat overlaps would be excluded from the assembly graph; however, assembly
algorithms construct the assembly graph using both types of overlaps, as true and repeat
overlaps cannot be distinguished individually. In the assembly graph, the nodes represent
actual reads, and edges represent OLC-quality overlaps between these reads (Figure 13).
Thus, the genome assembly becomes equivalent to finding a path through the graph that

visits each node exactly once (i.e.,, a Hamiltonian path).

A
\ 4

OR

& >
< >

Figure 12. True and false overlaps. The line with arrows represents a genome. 12A: True
overlap between reads S and T. 12B: Repeat induced overlap between reads S and T. The
orange segments represent repeats within the genome. Figure derived from Myers et al.
(2000).

GCATTGEAA —TcAA TGCAAT
¢ &
& % & A
TGGCA cA CAATT ATT— ATTTGAC

Figure 13. An OLC assembly graph. Nodes are complete reads and edges connect reads
that overlap. Note that in an actual OLC assembly graph, reads and overlaps would be much
larger. Here, theoretical reads and overlaps are shortened for clarity.

25

5.2.2 Layout

Finding a path through the OLC graph is not a trivial task. Imagine a graph of
millions of nodes and edges. Identifying a Hamiltonian path - a path that visits every node
exactly once - is extremely difficult, even for a powerful computer. In order to find such a
path, an algorithm must to start at some node and proceed to other, connected nodes. If the
algorithm visits a node more than once, it must backtrack, adjust the path, and test this new
path. So as the graph size increases, the number of options there are to test grows
exponentially. This process of identifying a Hamiltonian path falls into a class of problems
called NP-complete, for which the time required to solve a problem increases exponentially
with the problem size.

In order to decrease the size of the graph, the OLC assembly graph is simplified in
the layout stage, where segments of the assembly graph are compressed into contigs. Recall
that contigs are collections of reads that clearly overlap each other and refer to the same
overall sequence. Thus in the overlap graph, a contig would be a subgraph, or a group of
nodes, with many connections among each other, as they all overlap with each other and
refer to the same sequence (Figure 14A and 14B). Once a subgraph is identified, these
nodes and edges are compressed into one node, or a contig, thereby simplifying the graph
(Figure 14C). Note that within the contig subgraph, only the outer “beginning” and “end”
nodes connect to nodes outside of the subgraph. This is because nodes are compressed into

contigs until a fork is reached.

26

Figure 14. Graphical representation of a unique contig. 14A: The reads], K, L, M, and N.
14B: An OLC graph of the reads. There is one path that visits every read, highlighted in red.
14C: Reads], K, L, M, and N are compressed into a single node, J+K+L+M+N. Node
J+K+L+M+N represents a unique contig.

Forks are nodes connected to two or more other nodes that do not share any
overlap. Contig compression stops at a fork, because forks typically signify the boundary
between repeats and unrepeated segments of the genome (Pop, 2009). If contig formation
were to continue after a fork, it would diminish the certainty that the contig reads truly
cover the same genomic sequence. For example, in figure 15A and 15B, the R; + Rz repeat
contig is created from a subgraph of overlapping reads. Extension of this contig halts after
the repeat section because of a fork. This fork comes from reads whose prefix overlaps with
the suffix of the R1 + Rz repeat contig and whose suffix either overlaps with the prefix of
unique contig X or the prefix of unique contig Y (the reads that begin black but turn green

or red). Because the suffixes of these reads do not overlap each other, a fork is formed

(Figure 15B).

27

A
| | i
~

v

R,+R, Repeat Contig Y Unique Contig

w

R,;+R, Repeat Contig
—_— R,+R, Repeat Contig Z Unique Contig
. aaaa——
C
R,+R, Repeat Contig

|\[ﬂ
J

X Unique Contig Z Unique Contig
—

Y Unique Contig
 ——]

Figure 15. Contig classification. 15A: A genome that has three unique sections - X, Y, and Z
- and two repeats - Ry and Rz. 15B: A fork is formed because the reads that link the R1 + R>
contig to Y and Z do not overlap on the suffix end. 15C: A contig graph representation of
this assembly. Both repeat sections, R1 and Rz, are compressed into a single contig. Figure
derived from Myers et al. (2000).

The Celera Whole Genome Assembler introduced the concept of two classes of
contigs: unique contigs (unitigs) and repeat contigs. Unitigs are composed of reads that can
be unambiguously assembled. Generally, these reads only overlap in one way and do not
contain repeats within the genome. Essentially, unitigs are contigs not flagged as repeat
contigs.

Repeat contigs have abnormally high read coverage or connect to an abnormally
large number of other contigs. For example, in figure 15C, the R1 + R2repeat contig is

connected to more contigs and has more read coverage than the unique contigs X, Y, and Z.

Both the X and Y unique contigs are connected to the prefix of the R + Rz repeat contig as

28

they both have overlaps to this sequence. Similarly, unique contigs Y and Z have overlaps
with the suffix of the R: + Rz repeat contig. Additionally, this R: + Rz repeat contig is
different from other contigs because it has such high read coverage. Abnormally high
coverage allows assembly programs to identify repeat contigs during assembly validation
through statistics that compare the coverage of each contig (such as the A-statistic
mentioned earlier). Contigs with too much coverage are most likely due to over-collapsing
of repeats and are flagged as repeat contigs, to be used later in the layout stage (Myers et
al., 2000).

In the final stages of layout, unique contigs are joined into larger scaffolds. As
discussed earlier, the most common way to piece contigs into scaffolds is through mate-
pair information. With mate-pair information, assemblers can identify how far reads and
unique contigs should be apart from each other. After all unique contigs that can be
combined with mate pair information are joined, most OLC algorithms attempt to fill gaps

within scaffolds by using repetitive contigs (Batzoglou, 2004).

5.2.3 Consensus

After contig generation and scaffolding, the consensus sequence is derived. At this
point, the assembly graph has been reduced to large scaffolds - ideally a single scaffold. A
single scaffold would be represented by one node that resulted from collapsing all previous
nodes. Starting from the left most read of each scaffold, the OLC algorithm computes the
consensus of all of the reads composing each scaffold. Gaps in the genome may still be
present if the consensus step had insufficient mate-pair or repeat contig information. If an
assembly had gaps, it would result in a fragmented genome composed of multiple scaffolds,

because the gaps between the scaffolds could not be joined.

29

5.2.4 OLC vs Greedy Assembly

Both greedy algorithms and OLC algorithms begin with overlap generation.
However, the steps of OLC enable a global analysis of the assembly problem, instead of the
local analysis of greedy algorithms (Pop, 2009). This difference is especially apparent in
how both algorithms handle repeats. For example in figure 15, the proper genome
reconstruction - X, R1 + Rz, Y, R1 + Ry, Z - is easily inferred using the OLC method. A greedy-
extension assembly would either produce a fragmented assembly - perhaps joining X and
R1+ Rz, leaving Y and Z unassembled - or produce a misassembly by combining X, Y, Z and

leaving R1 + Rz unassembled (Pop, 2009).

5.2.4 Newbler Assembler

Because the majority of raw reads in the PHAST database are sequenced using a 454
sequencer, it is important to discuss a particular OLC implementation called Newbler.
Newbler is a proprietary assembler, distributed by Life Sciences with all 454 sequencers.
The program is very effective at assembling 454 data, in part due to its unique way of
calculating read overlaps. Instead of exclusively calculating overlaps in “base-space,” or
centered on the actual base calls of each read, Newbler also calculates pairwise overlaps in
“flow-space,” or based on the flowgram of each read (Quinn et al, 2008). Inherent to the
pyrosequencing technology of 454 sequencers is a degree of uncertainty about the number
of bases in homopolymer repeats (repeats of identical bases, such as AAAAA). Recall that
flowgrams record the light intensity of each base as it flows over a well of the PTP plate
(Figure 4). By normalizing these data, the signal recorded in flowgrams becomes

proportional to the number of contiguous bases in each repeat. Such information allows

30

Newbler to be able to align reads with a higher precision than possible in base-space
through comparison of the normalized signals (Miller et al, 2010).

As published in 2005, the basic Newbler algorithm runs two rounds of OLC. In the
first round, unitigs are generated, and in the second round these unitigs are used to
generate larger contigs by calculating pairwise overlaps between unitigs. These larger
contigs are split in areas of low coverage (less than 4 spanning reads) in a quality control
step (Margulies et al,, 2005). A paper published in 2008 discusses an updated version of
Newbler that follows the same general process, but updates the algorithms used at the
specific stages to better fit the longer reads generated by the newer GS FLX sequencer,
instead of the previously GS 20 model sequencer (Quinn et al.,, 2008). In the updated
Newbler, “detangling algorithms” are used to simplify the assembly graph after the
generation of larger contigs in the second round of OLC. After simplifying the graph, each
node (or contig) is classified a large contig (greater than 500 bp) or a regular contig
(greater than 100 bp). If information on paired end reads is available, Newbler performs an
additional scaffolding step. However, since these two publications, Newbler has been
updated several times to account for improvements in the 454 sequencing technology, so it

is difficult to identify the exact algorithms the current release uses (Miller et al, 2010).

5.3 DE BRUIN ASSEMBLY ALGORITHMS

A third, general assembly algorithm uses de Bruijn graphs instead of overlap graphs.
The de Bruijn assembly offers advantages over the traditional OLC algorithm: (1) no
expensive calculations of pairwise overlaps and (2) efficient algorithms exist for computing

Eulerian paths, that do not exist for Hamiltonian paths (Pop, 2009).

31

Instead of calculating overlaps, a de Bruijn assembly begins by calculating k-mers.
These k-mers are used to build the assembly graph, and decrease graph construction time.
Each k-mer is stored in memory at most once, regardless of the number times it occurs in a
genome, which means graph construction can proceed in constant time through a hash
table implementation (Miller et al, 2010). Since overlaps are never explicitly computed, as
in OLC assemblies, a substantial amount of computing time is saved.

In a de Bruijn assembly graph, the edges of the graph are unique subsequences of
length k within reads, and the nodes of the graph represent common subsequences of
length k - 1. Thus, an edge connects two nodes if the suffix of the source node shares an
exact match of length k - 2 with the prefix of the destination node (Pop, 2009)2. For
example, in figure 16, the edge CCAA connects the nodes CCA and CAA because there is an

overlap of CA. These characteristics are shown in a simplistic de Bruijn graph (Figure 16).

2 De Bruijn assembly graphs are also used to describe other k-mer graphs (Schatz et al.,
2010; Flicek and Birney, 2009; Zerbino, 2009). These alternative k-mer graphs use k-mers
as nodes, connected by edges when an exact k - 1 overlap occurs between nodes (Miller et
al, 2010). Edges of such an alternative k-mer graph are k + 1 sequences. If an assembler
ensures the k + 1 sequences exist in the genome, the genome assembly process still
corresponds to finding an Eulerian path (Pevzner, Tang, and Waterman, 2001; Butler et al,
2008). Such an assembler essentially uses the k-mer graph described in this thesis where
the true value of k = k + 1. If the assembler does not verify these k + 1 sequences exist in the
genome, the basic assembly process corresponds to identifying a Hamiltonian path, a
fundamentally different problem (Compeau et al, 2011).

32

CP‘P\C C
G Q’ CAQ
YS’ CCA CCAC

o(‘ P\CCP <T

ACC 8

O
ale
e
CCC

Figure 16. A simple de Bruijn graph with k = 4. The graph corresponds to a series of short
reads for the consensus sequence ACCCAACCAC. For simplicity, reverse complement edges
and nodes are ignored.

However, figure 16 overlooks a key feature of DNA - DNA is double stranded. In
order to properly reflect DNA, de Bruijn graphs must represent the forward and reverse
complements as k-mers in the assembly graph (Miller et al, 2010). Different de Bruijn
assemblers represent reverse complements differently. For example, the Velvet algorithm
stores forward and reverse k-mers as half nodes, while ABySS stores forward and reverse
k-mers as a single node with two sides (note these algorithms use the alternative k-mer
graph described in footnote 2; Miller et al, 2010). Idury and Waterman (1995) simply
include both forward and reverse edges and nodes in the assembly graph. In all cases,
reverse complements complicate the assembly graph. For the sake of simplicity, reverse
complements are not considered in figures in this document.

Following graph construction, error correction is an essential step in de Bruijn
assemblies. Unlike OLC implementations, de Bruijn graphs are extremely sensitive to
sequencing errors as they can introduce new k-mer. Various methods have been proposed
to identify errors. One method, spectral alignment, involves preprocessing reads before
graph formation (Pevzner et al. 2001; Chaisson and Pevzner, 2008). The method defines
the set of k-mers in genome G as Gr. In a de novo assembly, since Gy is not actually known, it

is approximated through a user-defined multiplicity threshold, m. K-mers that appear more

33

often than m are quality and part of Gx. K-mers that do not meet the threshold are
considered “errors.” Reads containing these erroneous k-mers are altered with the
minimum number of substitutions, insertions, and deletions, such that they no longer
contain erroneous k-mers. This produces a set of raw reads whose entire k-mer spectrum
falls in G, based on the m threshold. Although this method is efficient when compared to
other preprocessing methods that involve read alignments, it begins to lose its efficiency in
repetitive regions or in reads with high error rates (Chaisson and Pevzner, 2008).

Other methods identify and correct errors by analyzing the graph structure. These
methods rely on identifying “tips” and “bubbles” (or bulges). Errors less than k base pairs
from the end of reads tend to create unique k-mers that form dead-end “tips” in the
assembly graph (Figure 17B; Zerbino, 2009). Errors in the middle of long reads form
“bubbles” or “bulges” in the assembly graph, where two paths start and terminate at the
same node (Figure 17B). For example, in figure 17B, the path ACG-CGC-GCA-CAT-ATT
starts and ends at the same nodes as the path ACG-CGT-GTA-TAT-ATT. After identifying
these graph structures, erroneous nodes and edges or low coverage nodes and edges are
removed (Schatz et al., 2010). Again, tips and bubbles are handled slightly differently in
different de Bruijn assemblers, in part due to the different graph formations in

representing forward and reverse complements.

34

A ACGCA

CGCATT
ATTAGC
Reads ACGTATT
GCATT
CATTAC
TTAGC
Consensus
B Sequence ACGCATTAGC
ACGC CGCA CATT @ ATTA (20 \\ TTAG @ TAGC>@
(e & 2
» <% Yo

@ GCAT

@ CGTA GTAT

Figure 17. Bubble and tip in a de Bruijn assembly graph. 17A: Reads and consensus
sequence. Red bases represent sequencing errors. 17B: de Bruijn graph where k = 4. The
orange edges form a bubble. The blue edge is a tip.

After error correction, most de Bruijn assembly algorithms compress the assembly
graph into contigs. As with OLC assembly graphs, these contigs are non-branching
subgraphs of the de Bruijn graph (Schatz et al, 2010). Contigs are extended until branches,
which are essentially forks (pg 27). Repeats cause branches and create ambiguity in the
graph, or multiple ways to traverse the assembly graph. Assemblers must identify an
Eulerian path through this graph - a path that visits each edge exactly once. Unlike the
Hamiltonian path (a path that visits every node exactly once) required to assemble OLC
graphs, efficient algorithms exist for calculating Eulerian paths. Unfortunately, the
ambiguity created by repeats means multiple Eulerian paths exist (Figure 18B, 18C). The

job of a good de Bruijn assembler is to identify the correct Eulerian path, representing the

correct genome assembly (Figure 18C).

35

ATrAGTTKG
ACGCA 5 5 dnce O Ay é’
CGCAT fceg ATC & 4 > &
GCATT \ c o &
CATTA % o €aTg o
ATTAG (%\ - L A3 >
TTAGC test > OQ] Ny o8 pG
TAGCA ce e 8 e 14 _ AccA
AGCAT A GGCA GGear 6eay AGCA
GCATC
Reads pp l
ATCGG 8 Qv
TCGGC O Q
1G] RAY
CGGCA
GGCAT P)
GCATG
CATGA oY -
Consensus ~ t,?o
Sequence ACGCATTAGCATCGGCATGA S ey
ATGA
(5
¢ N ATTAGTTAG
11 dTCG ™ (KV -
fcag NTCO ON 02 ©Y
Ao TC\G caty L
0. £atg
G fAGQ
(ZGGC GE“ 9 F ngﬁL
C(';lg 14 ‘77‘(\ O g . haca
C4 §ach GGeaT 6AY AGCA
©
~
Q& Q.
s G
caTg Cexa
¥ v
Y
J
hewo

ATGA

Figure 18. Multiple Eulerian paths in de Bruijn assembly graph. Numbers on graphs
represent the order of a traversal through a graph. 18A: Reads in relationship to the
original sequence. 18B: A wrong Eulerian path for k = 5 (video available on PHAST website
and CD copy). 18C: The correct Eulerian path for k = 5 (video available on PHAST website
and CD copy).

Information critical to solving this problem is lost in the standard de Bruijn
formulation, as reads are broken into multiple k-mers. In a perfect world, WGS would
produce reads with equal length of k bases that perfectly sample the genome (Figure 18A).

In such a world, each edge in the de Bruijn graph would be a complete read of length k, and

no information would be lost. Unfortunately, sequencing technologies do not produce reads

36

of equal length or sample the genome perfectly. Instead, assemblers must use a k value that
is less than the length of the majority of the reads (Figure 19A). For example, in figure 19 a
value of 4 must be selected, because at k = 5 the assembly graph loses a key read of length
4, TAGC, which is critical for connecting this graph, as shown in figure 19B. When k = 5, the
graph does not contain an Eulerian path, resulting in a fragmented assembly of multiple
contigs (Figure 19B). Once a value for k is chosen, reads longer than k become fragmented
into k-mers, so that the resulting de Bruijn graph no longer represents full reads as edges
(Figure 19C). For example in figure 19C, the read CGCATT is broken into the edges CGCA,
GCAT, and CATT because k = 4. If k = 6, the length of CGCATT, then this read would be
preserved as a single edge.

The classical Eulerian path assembly approach loses edge linkage information, as in
figure 19C, when reads are broken into multiple edges in a de Bruijn graph. Losing this
information is a problem because read linkage information can reveal the correct Eulerian
path when multiple Eulerian paths exist due to repeats. For example, without read linkage
information, you could not tell which path depicted in figure 19D and 19E corresponds to
the actual genome sequence, as you could progress from node CAT to either node ATT or
ATC. Pevzner et al. (2001) proposed the Eulerian super-path in attempt to resolve this
graph ambiguity. An Eulerian super-path is an Eulerian path constructed from sub-paths
that correspond to reads (Figure 19D). In this way, the actual read data is preserved and
fewer alternative Eulerian paths exist. For example, the Eulerian super-path approach
identifies the correct assembly, figure 19D, from the incorrect assembly, figure 19E. Read
linkage information in figure 19C tells the assembler to visit ATT after the first time it visits

CAT.

37

A ACGCA B facd Em)—rrras s

CGCATT P '
ATTAG e 9 %ﬁ' &
TAGC o 2 e
| <
. 7 :
Reads AGCATCGG Gq'“‘c‘? QL 2% <
TCGGCAT T g AL O
SCargay 6@
GCATGA
) &
ONSENsUS A GCATTAGCATCGGCATGA g%
Sequence éj %\
) =
c écoa (catc
3
o S
U -‘
U n
L N
€669 fateg
(.
=N

Figure 19. Representing reads
in de Bruijn graphs when k is
less than read length. 19A: The reads are of varying lengths. The green reads identify the
correct path in the Eulerian super-path problem. The red read causes no solution when k 2
5. 19B: Choosing k = 5 results in a graph that has no solution. The node TAGC is unattached
and would be thrown out. Also, the edge CATTA is missing, because that edge does not exist
in within a single raw read, and could not be identified as a k-mer. 19C: The highlighted
edges are edges that came from the read CGCATT. 19D: The Eulerian super-path of this
graph is the correct path. In the video edges are not highlighted based on linkage
information, but are highlighted in the sequence that linkage information would tell the
assembler is the correct path (video available on PHAST website and CD copy). 19E: A
wrong Eulerian path (video available on PHAST website and CD copy).

38

In 2007, Medvedev et al. proved the Eulerian super-path problem to be NP-Hard,
just as difficult as the Hamiltonian path problem of OLC assemblers. Nevertheless, most de
Bruijn assemblers use the idea of mapping reads to the de Bruijn assembly graph in order
to resolve repeat branches. As a final step, most de Bruijn assemblers use mate pair

information, when available, to further simplify the graph in a scaffolding process.

5.4 MIMICKING INTELLIGENT READ ASSEMBLER (MIRA)

PHAST uses an assembly program called MIRA (Mimicking Intelligent Read
Assembly) that has both OLC and greedy components (Chevreux, 2005). As with most
assemblers, MIRA begins by cleaning reads of low quality bases and vector vestiges. These
“cleaned” sections of reads are called high confidence regions (HCR) and are used for the
general assembly. Low confidence regions (LCR) of a read are stored for later use to further
verify HCR contigs. Using the HCR data, MIRA performs a fast read comparison - where
each read is compared to every other read and its reverse complement - in order to
identify potential overlaps. Originally, two algorithms, called DNA-SAND and ZEBRA, were
used to scan for potential overlaps (Chevreux, 2005). However, in the most recent MIRA
release, an unpublished scanner, SKIM, has replaced these algorithms (FreeLists, 2011).
According to Chevreux, the author of MIRA, SKIM is very similar to a published algorithm
called SlideSort (FreeLists, 2011; Shimizu and Tsuda, 2011). Both SKIM and SlideSort
identify reads with potential overlap based on common k-mers. In addition to returning
reads with possible overlaps, these algorithms return an approximate offset, or distance
from the end of a read, for the sequence alignment (Figure 204A).

MIRA scores and filters overlap regions using a banded Smith-Waterman alignment

algorithm. The banded Smith-Waterman alignment algorithm is a simplification of the

39

standard Smith-Waterman alignment algorithm. In a normal Smith-Waterman alignment, a
path corresponding to the local alignment is generated in an n; x nz alignment matrix,
where n; and n; are the lengths of two different reads. This path starts and ends at the
offset positions of the alignment between reads. Instead of calculating the entire n; x nz
alignment matrix, the banded Smith-Waterman alignment calculates a subset (or band) of
that matrix based on the offset approximations from SKIM (Figure 10B). The band area is
determined by multiplying the minimum distance between the overlap offsets (which is
equivalent to estimating the length of the overlap) by k, where k is a parameter
representing the band width (usually, 30 < k < 70). The banded alignment requires k
because the parameter acts as an error buffer to account for indels in the alignment. This
simple modification decreases the complexity of the alignment problem from O(n; * nz) to
O(k * min[ny,n;]), as only small bands, roughly the size of the overlap need to be calculated

(Chevreux, 2005).

A o B €mmmmtanan » S
<> T <-2-> or; #
07 S A
]
1
S <___°_T_2___) i Or2
rmmnnncccaa > T 1
Os; T S 5 v

Figure 20. Simplifying a Smith-Waterman alignment using overlap offsets. 1A: Reads S and
T overlap in two different positions. Each overlap has a different offset, labeled by o,. 1B:
The bands of a banded Smith-Waterman alignment matrix (shown in white) inside the area
of a normal Smith-Waterman alignment matrix (shown in grey). The offset length is used to
approximate the band locations. These bands are slightly larger than the predicted offset to
account for possible errors. Figure derived from Chevreux (2005).

The resulting Smith-Waterman alignments of reads are scored based on similarity in

the alignment. In order to fit next-gen shotgun sequencing data, the alignment-scoring

40

method is slightly different from the standard Smith-Waterman scoring scheme. When a
known base, perhaps “A”, aligns to an unknown base, “N”, instead of receiving a
misalignment penalty, zero is added to the score. Unknown bases occur when a sequencer
sees a base in the sequencing signal but cannot confidently determine the specific base. An
alignment of a known base to an unknown base is neither a misalignment nor a perfect
alignment, so the score remains unchanged. In order to account for the low error rate of
next-gen sequencers, the alignment score is incrementally scaled down according to the
number of gaps or long stretches of mismatches in an alighment. With next-gen sequencers,
errors are unlikely, so if an alignment differs at more than a few consecutive bases, it is
unlikely these reads share a true overlap. Overlaps with scores close to a perfect overlap
score are considered quality and become edges in the overlap graph.

MIRA uses quality overlaps to build a weighted overlap graph, in which an edge’s
weight is based on the alignment score and the length of the overlap. The weighted overlap
graph is used to construct contigs. MIRA divides the process of contig construction into two
modules: a pathfinder module and a contig module. The pathfinder module identifies the
next node in the overlap graph for contig extension and tries to add it to a growing contig.
The contig module either accepts and incorporates the read (node) or rejects the read
(Figure 21).

The pathfinder module begins by identifying a node in the assembly graph with the
most highly weighted edges. This node is submitted to the contig module and serves as an
“anchor” for contig formation since it has the longest and highest quality overlaps with the
greatest number of reads in the overlap graph. Next, the pathfinder traverses the graph and

identifies the next node to submit to the contig module for incorporation. As of 2005, the

41

pathfinder module traverses the graph using an improved greedy algorithm, which helps
avoid misassemblies or highly fragmented assemblies. The basic algorithm iteratively
expands out by n nodes for m levels. The module begins by identifying n nodes with the
largest edge weights that are also adjacent to the current contig nodes. The pathfinder’s
goal is to determine which of these n nodes is most likely to lead to the best possible future
overlaps, in addition to the current overlap. Each of the n nodes serves as the beginning
“seed” of a path that looks ahead at future overlaps, called a look-ahead path. Using a
recursive algorithm, the pathfinder module traverses each partial path for a maximum of m
recursions (usually 4 to 5 recursions). At each recursive step, the algorithm selects the next
n largest edges to continue the look-ahead path. After generating every look-ahead path,
MIRA computes the maximum score of each seed by calculating the sum of the largest
edges in the seed’s look-ahead path. The pathfinder module selects the seed with the
largest maximum score and submits it to the contig module for evaluation.

The contig module analyzes the impact of this new read on the consensus of the
contig. If the nucleotides of the new read are largely consistent with the current consensus
sequence, then the contig module accepts this read and adds it to the contig. Otherwise, if
too many base differences occur, the contig module rejects this read. If a read is rejected,
the pathfinder will search for the next best partial path. The algorithm will submit the seed
read of the next best path to the contig module, so the pathfinder may submit the same,
rejected read at a different position within the contig. When the pathfinder module has

exhausted all possibilities for contig growth, the algorithm searches for a new anchor point

42

to start a new contig. The entire contig formation process is complete once every read is
part of a contig or identified as a single-read contig3 (Figure 21; Chevreux, 2005).
while overlap graph contains reads not in a contig:
pathfinder selects anchor read
while un-submitted contig overlaps exist:
pathfinder submits seed read of best look-ahead path
if contig module accepts read:

read added to growing contig

Figure 21. Pseudo-code for MIRA contig construction process.

The first assembly draft consists of contigs generated from the high confidence parts
of reads. As a final step, MIRA attempts to link contigs and fix misassemblies by re-
analyzing low confidence parts of reads. In this process, LCR’s are unmasked and aligned to
the existing consensus sequence. In most cases, the HCR’s overrule discrepancies in LCR’s.
However sometimes, in areas with particularly low coverage, LCR’s of several reads may
agree with each other and overrule an incorrect call made by a small number of HCR’s
covering this section of the contig. In addition, several highly similar LCR’s may extend past
a contig, joining it to another contig. In this way, MIRA makes maximal use of all data
gathered from the reads.

The MIRA parameters used in PHAST are general parameters that should produce a
reasonable assembly of most small phage genomes. PHAST is not optimized to perfectly
assemble one particular phage, so it might be possible to improve each assembly produced
by PHAST by slightly adjusting the MIRA assembly parameters. However, most of the MIRA

assembly parameters are fixed in PHAST, because the website is intended to be a general,

3 Technically, a single read is not a contig. However, MIRA will put such a read in the same
contig data structure.

43

genome assembly teaching tool. Fixing these parameters simplifies the assembly process

and helps a user focus on the more relevant, essential parameters in a genome assembly.

5.5 CONCLUSION

There are several classes of genome assembly methods, with different advantages
and disadvantages. There is no single best assembly algorithm; the proper assembly
algorithm depends on the target genome complexity, the size of the target genome, and
most importantly the type of reads. In general, OLC implementations perform very well
with longer reads, such as Sanger reads or the newer and longer 454 reads, while de Bruijn
implementations excel in assembling shorter reads, such as [llumina reads (Schatz et al,
2010). As sequencing technologies change and improve, assembly techniques must also

adapt to fit the data.

44

6 RESULTS
[developed PHAST (Phage Assembly Suite and Tutorial) to be a web-based,
interactive genome assembly educational tool. PHAST is freely available online at

http://compbio.davidson.edu, and the code will work on most Unix-based servers. The

homepage is a general outline of the genome assembly process. Users who want to
immediately begin assembly and quickly learn the features of PHAST should go to the
“Quick Walkthrough” page. The majority of this Results section is available online through
PHAST. Below is a brief highlight of PHAST’s major features.

PHAST includes tutorials that provide an overview of current genome assembly
algorithms, described in detail in Chapter 5 of this thesis. In addition to learning about
genome assemblies, users can perform their own assemblies and discover the effects
concepts introduced in the tutorials have on the quality of a genome assembly. For
example, a user can decrease genome coverage by using a percentage of raw reads. A user
can choose not to clean 454 reads of vector sequences, which inevitably complicates the
assembly by generating false overlaps. A user can also compare an assembly with a
different assembly that used two sets of reads. In some cases, a sequencing facility
sequences the genome of a phage more than once in order to piece together contigs or
resolve genomic areas of low coverage. The multi-read assembly feature allows a user to
assemble a phage genome using all available reads, divided among files from different
sequencing runs. An advanced user can select reads from two separate genomes to find out
if the software can assemble each genome separately. In a perfect world with a perfect

assembler, a two-genome assembly would produce two large contigs, corresponding to the

45

two different genomes. In some cases, like with the acadian and timshel phages, MIRA will
produce an assembly with two large contigs; however, in other cases, like with the
bpbiebs31 and euphoria phages, the assembly is extremely fragmented.

After assembling several genomes, a user can compare assemblies using an
integrated dotplot tool called gepard (GEnome PAir - Rapid Dotter; Krumsiek et al, 2007).
With gepard, users can visualize the relationship of one genome to another and assess the
effect of the parameters used in an assembly. For example, users can compare two
assemblies of the same set of reads, one using 100% of the reads and one using 10% of the
reads. In the resulting dotplot, a user can quickly identify fragmented areas of the 10%
assembly caused by a decrease in genome coverage. A series of assemblies using different
amounts of the available reads will allow users to determine a minimum threshold
necessary for complete assembly. Finally with gepard, users can also identify similar
genomic regions between two different phages, just as PHIRE researchers do to classify
unknown phage genomes (Pope et al.,, 2011).

Future versions of PHAST could include features designed to further enrich the user
experience. A web-based, multiple genome comparison tool would be useful not only to
PHAST but to the scientific community in general. Currently, to compare several genomes
at once, a user must download each genome’s fasta file and compare them using a desktop
application such as MAUVE (Darling et al,, 2004). A web-based interface, perhaps coded in
JavaScript and HMTLS5, that allows a user to visualize and interact with a multiple genome
alignment would streamline the comparison process in PHAST and have many other
applications across the web. Also, PHAST could be expanded to support multiple genome

assembly methods. This feature would allow the user to run an assembly using a standard

46

OLC assembler, such as the Celera Whole Genome Assembler, or a standard de Bruijn
assembler, such as the Euler Assembler. A user could then determine which assembly
method is best suited for their specific sequence data. Such features would further enhance
the ability of PHAST to teach genome assemblies in an interactive, self-contained

environment.

47

7 CONCLUSIONS

The future holds many opportunities and challenges for improvement and
innovation in the emerging field of genome assembly. Assembly algorithms must adjust to
accommodate constantly changing genomic input data. In 2000, most sequencing projects
used long Sanger reads. Roughly seven years later, the standard whole genome sequencing
method had shifted to cheaper next-gen sequencers (454, lllumina, etc.) that generate short
reads. Now, companies promise sequencers that generate extremely long reads for a
fraction of the current cost. With further advancement in sequencing technology, there will
be opportunities to improve and develop assembly methods tailored to fit the
characteristics of new sequencing data.

The methodology used to validate and compare genome assemblies must also keep
pace with the developing sequencing technology. As whole genome sequencing becomes
commonplace, sequencing facilities will have an even greater need to automate genome
assembly validation tools to replace the current expensive and tedious manual approaches.
In addition, tools designed to simultaneously compare multiple entire genomes will
become particularly important to make use of the rapidly increasing number of whole
genomes sequenced. Scientists will want to know how genomes differ on a large, whole
genome structure scale in addition to a small, localized base pair scale. Efficient tools
designed to visualize complex information will play a crucial role understanding genomic
differences between both individuals and species.

Finally, researchers must continue to develop tools designed to assemble, analyze,

and validate genomic data from entire communities (metagenomics), rather than specific

48

individuals. The study of metagenomics explores the interactions between species in entire
communities through sequencing complex samples recovered from an environment.
Development in metagenomic tools will give researchers the ability to better understand
the functional differences at various levels in communities and populations, which is
currently too difficult using today’s technology. As sequencing technology and assembly
algorithms advance, the scientific community will have the opportunity to gain a greater
understanding of organisms and their relationship to one another than was ever previously

imaginable.

49

REFERENCES

5500 Series SOLiD Sequencers [Internet]. Life Technologies: c2011 [cited 2012 Jan
24]. Available at: http://media.invitrogen.com.edgesuite.net/ab/applications-
technologies/solid/solid-5500.html

. Batzoglou S. Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics.
(Jorde LB, Little PFR, Dunn M], Subramaniam S, editors.). Chichester, UK: John Wiley
& Sons, Ltd; 2004.

. Butler], MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES, Nusbaum C,
Jaffe DB. ALLPATHS: De novo assembly of whole-genome shotgun microreads.
Genome Research. 2008 February 21;18(5):810-820.

. Campbell AM, Heyer LJ]. How are Genomes Sequenced. In: Discovering Genomics,
Proteomics, & Bioinformatics. 2nd ed. San Francisco: Benjamin Cummings; 2007. p
34-59.

. Chaisson M], Pevzner PA. Short read fragment assembly of bacterial genomes.
Genome Research. 2008 February 1;18(2):324-330.

. Chevreux B. MIRA: an automated genome and EST assembler. Ruprecht-Karls
University, Heidelberg, Germany. 2005.

. Chevreux B. Sequence assembly with MIRA3: The Definitive Guide [Internet]. 2010
[cited 2012 Feb 15]. Available from: http://mira-
assembler.sourceforge.net/docs/DefinitiveGuideToMIRA.pdf

. Compeau PEC, Pevzner PA, Tesler G. How to apply de Bruijn graphs to genome

assembly. Nature Biotechnology. 2011 November 1;29(11):987-991.

50

10.

11.

12.

13.

14.

15.

16.

Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alighment of conserved
genomic sequence with rearrangements. Genome Research. 2004 July;14(7):1394-
1403.

Deonier RC, Tavare S, Waterman MS. Computational Genome Analysis. New York:
Springer; 2005.

DNA sequencing - the 454 method [Internet]. London: Wellcome Trust: 2011 [cited
2012 Jan 31]. Available from: http://www.wellcome.ac.uk/Education-
resources/Teaching-and-education/Animations/DNA/WTX056046.htm

DNA sequencing - the [llumina method [Internet]. London: Wellcome Trust: 2011
[cited 2012 Jan 31]. Available from: http://www.wellcome.ac.uk/Education-
resources/Teaching-and-education/Animations/DNA/WTX056051.htm

Flicek P, Birney E. Sense from sequence reads: methods for alighment and assembly.
Nature Methods. 2009 November;6(11s):S6-S12.

FreeLists: Mailing List Archive for mira_talk [Internet]. Avenir Technologies: c2000-
2011 [cited 2012 Feb 24]. Available from:
http://www.freelists.org/archive/mira_talk

Hatfull GF, Pedulla ML, Jacobs-Sera D, Cichon PM, Foley A, Ford ME, Gonda RM,
Houtz JM, Hryckowian A], Kelchner VA, et al. Exploring the Mycobacteriophage
Metaproteome: Phage Genomics as an Educational Platform. PLoS Genetics.
2006;2(6):e92.

Huerta M, Downing G, Haseltine F, Seto B, Liu Y. NIH working definition of

bioinformatics and computational biology. The Biomedical Information Science and

51

17.

18.

19.

20.

21.

22.

23.

Technology Initiative Consortium (BISTIC) Definition Committee of National
Institutes of Health (NIH). 2000;17.

Idury RM, Waterman MS. A new algorithm for DNA sequence assembly. Journal of
computational biology: a journal of computational molecular cell biology.
1995;2(2):291-306.

Introduction to SMRT Sequencing [Internet]. Pacific Biosciences of California Inc:
c2010 - 2011 [cited 2012 Jan 24]. Available from:
http://www.pacificbiosciences.com/video-gallery/index.html

Ion Torrent technology how does it work? [Internet]. Life Technologies: 2012 [cited
2012 Jan 24]. Available from:
http://www.invitrogen.com/site/us/en/home/Products-and-
Services/Applications/Sequencing/Semiconductor-Sequencing/Semiconductor-
Sequencing-Technology/lon-Torrent-Technology-How-Does-It-Work.html

Kim S, Tang H, Mardis E. Genome sequencing technology and algorithms. Norwood:
Artech House Publishers; 2008.

Krumsiek], Arnold R, Rattei T. Gepard: a rapid and sensitive tool for creating
dotplots on genome scale. Bioinformatics. 2007 April 30;23(8):1026-1028.

Mardis ER. The impact of next-generation sequencing technology on genetics.
Trends in Genetics. 2008 March;24(3):133-141.

Margulies M, Egholm M, Altman WE, Attiya S, Bader]S, Bemben LA, Berka],
Braverman MS, Chen Y-J, Chen Z, et al. Genome sequencing in microfabricated high-

density picolitre reactors. Nature. 2005 September 15;437(7057):376-380.

52

24,

25.

26.

27.

28.

29.

30.

31.

32.

Mate Pair Sequencing [Internet]. [llumina Inc: 2012 [cited 2012 Feb 1]. Available
from: http://www.illumina.com/technology/mate_pair_sequencing_assay.ilmn
Medvedev P, Georgiou K, Myers G, Brudno M. Computability of models for sequence
assembly. Algorithms in Bioinformatics. 2007:289-301.

Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, Johnson], Li K,
Mobarry C, Sutton G. Aggressive assembly of pyrosequencing reads with mates.
Bioinformatics. 2008 October 24;24(24):2818-2824.

Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequencing
data. Genomics. 2010 June 1;95(6):315-327.

Mycobacteriophage Database [Internet]. 2012 [cited 2012 Feb 21]. Available from:
http://phagesdb.org

Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan M], Kravitz SA,
Mobarry CM, Reinert KH, Remington KA, et al. A whole-genome assembly of
Drosophila. Science. 2000 March 24;287(5461):2196-2204.

Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M. The
160-Kilobase Genome of the Bacterial Endosymbiont Carsonella. Science. 2006
October 13;314(5797):267-267.

Nanopore Sensing [Internet]. Oxford: Oxford Nanopore Technologies: c2008-
2011[cited 2012 Jan 24]. Available from:
http://www.nanoporetech.com/sections/index/55.

Narzisi G, Mishra B. Comparing De Novo Genome Assembly: The Long and Short of It

Aerts S, editor. PLoS ONE. 2011 April 29;6(4):e19175.

53

33.

34.

35.

36.

37.

38.

39.

40.

41.

Nebula Awards [Internet]. Science Fiction & Fantasy Writers of America: 2009 [cited
2011 July 7]. Available from: http://www.sfwa.org/nebula-awards/rules/.
Paired-End Sequencing [Internet]. [llumina Inc: 2012 [cited 2012 Feb 1]. Available
from: http://www.illumina.com/technology/paired_end_sequencing_assay.ilmn
Perkel JM. Sanger Who? Sequencing the next generation. Science. 2009 April
6;324(5924):275-279.

Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA fragment
assembly. Proceedings of the National Academy of Sciences of the United States of
America. 2001 August 14;98(17):9748-9753.

Phanning the Phlames: Expansion of the Phage Hunters Integrating Research and
Education (PHIRE) Program [Internet]. Chevy Chase (MD): Howard Hughes Medical
Institute: c2012 [cited 2012 Feb 21]. Available from:
http://www.hhmi.org/grants/professors/hatfull. html

Pop M. Genome assembly reborn: recent computational challenges. Briefings in
Bioinformatics. 2009 June 7;10(4):354-366.

Pop M, Salzberg SL. Bioinformatics challenges of new sequencing technology. Trends
in genetics : TIG. 2008 March;24(3):142-149.

Pope WH, Jacobs-Sera D, Russell DA, Peebles CL, Al-Atrache Z, Alcoser TA, Alexander
LM, Alfano MB, Alford ST, Amy NE, et al. Expanding the Diversity of
Mycobacteriophages: Insights into Genome Architecture and Evolution Aziz R,
editor. PLoS ONE. 2011 January 27;6(1):e16329.

Principle of Pyrosequencing Technology [Internet]. QIAGEN: 2012 [cited 2012 Jan

31]. Available from: http://www.pyrosequencing.com/DynPage.aspx?id=7454.

54

42.Quinn NL, Levenkova N, Chow W, Bouffard P, Boroevich KA, Knight JR, Jarvie TP,
Lubieniecki KP, Desany BA, Koop BF, et al. Assessing the feasibility of GS FLX
Pyrosequencing for sequencing the Atlantic salmon genome. BMC Genomics.
2008;9(1):404.

43. Reading and Analysis [Internet]. ZS Genetics Inc: 2004 - 2012 [cited 2012 Feb 26].
Available from: http://www.zsgenetics.com/reading%20&%?20analysis.htm

44. Russell PJ. iGenetics: A Molecular Approach (3rd Edition). 3rd ed. Benjamin
Cummings; 2010 p. 21.

45. Schatz M(, Delcher AL, Salzberg SL. Assembly of large genomes using second-
generation sequencing. Genome Research. 2010 September 1;20(9):1165-1173.

46.Shimizu K, Tsuda K. SlideSort: all pairs similarity search for short reads.
Bioinformatics. 2011 February 8;27(4):464-470.

47.tSMS How It Works [Internet]. Cambridge (MA): Helicos BioSciences Corporation:
c2008 [cited Feb 26]. Available from:
http://helicosbio.com/Technology/TrueSingleMoleculeSequencing/tSMStradeHowlI
tWorks/tabid/162 /Default.aspx

48. Wetzel], Kingsford C, Pop M. Assessing the benefits of using mate-pairs to resolve
repeats in de novo short-read prokaryotic assemblies. BMC Bioinformatics. 2011
April 13;12(1):95.

49. Wilton S. Dideoxy Sequencing of DNA. In: eLS [Internet]. Chichester, UK: John Wiley
& Sons, Ltd; 2002 [cited 2012 Jan 23]. Available from:

http://dx.doi.org/10.1038/npg.els.0003768.

55

50. Zerbino DR. Genome assembly and comparison using de Bruijn graphs. Hinxton,

Cambridge, United Kingdom. 2009;164.

56

9 APPENDIX 1: CODE

The latest release of PHAST is available for download at
http://compbio.davidson.edu/phast release.zip

57

