RNAseq Analysis
GCAT-SEEK workshop

Mark Peterson

2015/May

Table of Contents

1 Computersetup.........................

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2 Sequence processing and quality control

2.1
2.2
2.3
24
25
2.6
2.7
2.8

3 Read Mapping

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4 Differential Expression

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8

Background

Chapter goals

Sign on to a Linux computer system
Linux tutorial

Loading data

Where to go for help

Further Reading

Background

Chapter goals
Checking data quality
Setting up fastqc
Running FastQC
Trimming bad data
Where to go for help
Further Reading

Background

Chapter goals
Choosing an aligner
Installing RSEM
Prepare for alignment
Run the alignment
Where to go for help
Further Reading

Background
Chapter goals
Prepare R
Download data
DESeq

Interpreting differential expression analysis

Where to go for help
Further Reading

NN OO O U1 Q1

O

10
11
11
12
13

15
15
15
16
16
16
17
18
19

21
21
23
23
23
24
27
28
28

TABLE OF CONTENTS

Functional group analysis.............. 29
5.1 Background 29
5.2 Chapter goals 30
5.3 Basic statistics 30
54 Getting GO annotations 31
5.5 Run a GO analysis 31
5.6 Where to go for help 33
5.7 Further Reading 33
Variant Detection.......... 35
6.1 Background 35
6.2 Chapter goals 35
6.3 Set up the software 36
6.4 Prepare the alignment file 36
6.5 Run VarScan 36
6.6 Run a more complete analysis 37
6.7 Where to go for help 37
6.8 Further Reading 38
De Novo Assembly 39
7.1 Background 39
7.2 Chapter goals 39
7.3 Getting the data together 39
7.4 Set up the assembly script 40
7.5 Where to go for help 41
7.6 Further Reading 41
Simple in-class options.......... 43
8.1 Background 43
8.2 Chapter goals 43
8.3 Galaxy 43
8.4 iPlant 45
8.5 Accelerating Comparative Genomics 46
8.6 David Functional Annotation Tool 46
8.7 Commercial Software 47
8.8 Further Reading 47
Lab WOrK o 49
9.1 Background 49
9.2 Chapter goals 50
9.3 Sample collection 50
9.4 RNA extraction 50
9.5 rRNA removal 50
9.6 Library Preparation 50
9.7 Where to go for help 51

Chapter 1:

Computer setup

1.1. Background

RNA-seq analysis requires a lot of computer resources to handle the large datasets that are
generated. Even a simple experiment can quickly run up near terabytes of data, and handling
this data requires specially designed programs. Most of these programs can be run on your own
computer, but they often take a very long time and slow your computer down to the point of no
longer being usable. One simple solution to this problem is to run your analyses on a different
computer, such as a Linux-based computer-cluster/supercomputer. In this module, we will walk
through the process of using Linux for sequence analysis. In a later chapter, we will introduce a
few alternatives, including web based platforms (See chapter 8).

One important thing to keep in mind: these tools are constantly changing as next-generation
sequencing is still an emerging field. The instructions here will include details for the specific
platforms and programs that will be used here, but will also explain what is happening, so
that you can generalize to other applications. In general, remember that “Google is your friend”
(GIYF) —someone else has almost always encountered problems similar to yours, and answers
to their questions are usually available online with a little Google-fu. Second, most of these pro-
grams and computer resources come with extensive documentation that can walk you through
many of the basic steps. When in doubt, “read the manual” (RTFM) and many of your questions
may be addressed. All users, even advanced users, often do not remember the correct commands,
but are just better at searching for the answer:

- O DISARM THE BOMB,
v SMPLY ENTER A VALID
YoU USE UNiX! tar COMMAND ON YOUR

FRST TRY, NO GOOGLING.
COME QUICK! YoU HAVE SECONDS.

03

1.2. Chapter goals

Figure 1.1: xkcd.com /1168 (Creative Commons Licencse)

* Learn how to access a computer cluster or supercomputer
* Learn how to install necessary software

® Learn how to transfer data to and from these systems

Understand a basic Linux command line interface

Troubleshoot simple computer system problems

http://xkcd.com/1168

Computer setup

1.3. Sign on to a Linux computer system

Signing into a computer cluster or supercomputer is a bit more complicated than signing into
your own computer. However, once mastered, it is straight forward to accomplish. You first need
a system capable of “SSH” (Secure Shell) connecting. On Windows, you would need to install
PuTTY to be able to gain access (search for “putty ssh” and follow the directions to install select-
ing “Windows installer for everything except PuTTYtel”). In Unix or Mac, the terminal comes
pre-installed with this ability, just open a terminal window (Ctrl+Alt+t in Ubuntu, Applications
— Utilities — “Terminal” in Mac). The basic command, which can be adapted to fill in the PuTTY
screen is then:

ssh user@hostname

where “user” is your assigned user name on the system, and “hostname” is the address you
are attempting to connect with: either an address or an IP address. Thus, for our system it will
look like:

ssh user@mason.indiana.edu

You will then be asked for your password. Enter it here (the cursor will not move as you
type), and you should be granted access to the system. The first time you log on to the super
computer, it will likely ask you to select your shell. There is substantial debate about the “best”
shell, but they will all function similarly for your needs. All of the examples in this workshop
will use the BASH shell, so please select that one.

1.4. Linux tutorial

You will now have a command line prompt, and will be able to navigate as you would on any
Linux system. We will go through detailed commands as we go through these modules, however,
to get a feel for the Linux system, please work through this (wonderful) online tutorial:
http://www.ee.surrey.ac.uk/Teaching/Unix/. A few notes on this tutorial:

* Some of the commands are specific to that University’s file system, but they offer clear ways
to work around that. For example, you may need to use the following to download one of
the files:

wget http://www.ee.surrey.ac.uk/Teaching/Unix/science.txt

* They are using a a different shell (tcsh instead of bash), which leads to a few small differ-
ences (e.g., the prompt in bash is >’ instead of "%’ and in 8.4, the files they are referring to
are called ".profile” and ’.bashrc” instead of login and cshrc. Just a thing to be aware of.

¢ They suggest using 'nedit’ to modify text files. But, it doesn’t come standard on Linux. For
this tutorial, replace ‘nedit” with ‘nano’, which runs from the command line. Use Ctrl+o to
save (for “out”), and Ctrl+x to exit.

1.5. Loading data

There are three basic ways we are going to get data on to computer for this class: scp, wget,
and copying from things already loaded for you. First, let’s try loading something from your
local machine using scp (Secure Copy). Open a second terminal window on your computer

6

http://www.ee.surrey.ac.uk/Teaching/Unix/

Computer setup

(Windows users, see the below for more detailed directions). You will then need to move (using
“cd folderName”) to a folder that contains the data you wish to upload, then enter the scp
command. For example:

cd folderName
scp myFile.txt user@mason.indiana.edu:

In Windows, the command structure is a bit different. Access a terminal window by hitting
Ctrl+ESC, typing “R”, typing “cmd” and then hitting Enter. From here, cd to the appropriate
folder, as above, then enter the command.

o rogram llies u SCp.exe m 1le.txt user@Omason.1indiana.edu:
"C:\Program Files\PuTTY\pscp.exe" myFil o ind d

In all places where you are told to use scp, you will have to use this full path instead. The path
to the “pscp.exe” file must match the location of your installation (the folder you installed PuTTY
into), so double-check the path if you get an error (and make sure you are using backslashes here,
but only in Windows as they have not adopted the standard convention). You can also add that
path to your “path” Environmental Variable to avoid having to retype it every time, but that is
outside the scope of this module.

Note that quotation marks are necessary if there is a space in the directory name for any of
the paths you are using (e.g. “Program Files” or “GCAT Workshop”), which is one (of many)
reasons to avoid spaces in file and directory names.

Alternatively, you can use wget to download a file. The format is similar to cp and scp, just
with a url in place of the source file and that the source file name is kept (but stored in your
current directory). This command works with any download-able file, as you saw when working
through the tutorial. We will use it most often for downloading programs to install, but it is also
a nice way to download some data.

Finally, all of you have access to a shared directory, which we will be using extensively, named
‘/N/dc2/projects/ GCAT /workshop’. Copy the file "testFile.txt’ into your own home directory,
using cd and cp as necessary.

1.6. Where to go for help

The great thing about Linux is that there is a large community, so every problem you en-
counter has likely been faced (and solved) by other users who are happy to share their solutions.
In addition, nearly every package comes with (at least) one of two simple ways to pull up more
information:

man packageName
packageName --help

These two commands will pull up a lot of information about the syntax and options available
for that software, often with usage examples. At the very least, it may identify the option you
need help with: a great way to target your search for more information.

1.7. Further Reading

More information related to these topics can be found in:
* Any Unix/Linux guidebook, including great online resources

¢ The man and help pages of the package(s) you are interested in

Computer setup

Chapter 2:

Sequence processing and quality control

2.1. Background

After sending off your RNA for sequencing (or downloading it from SRA) and waiting pa-
tiently, you finally have data! ... Now what? The files you have received contain billions of bases
of sequence with information on quality, but where to begin? This module is the first step in that
processing, and the first time we will be working directly at the command line interface with
our data. Next generation sequencing platforms, by virtue of their large outputs, are bound to
produce some errors. The goal of this module is to identify and remove many of these errors.

Figure 2.1: dilbert.com /strips/comic/2008-05-10/

2.2. Chapter goals
¢ Learn about sequencing quality scores

* Learn how to identify potential problems in sequencing data

Learn how to handle and remove these potential errors

Understand the indicators of quality sequence data

Manage a large dataset without terror

2.3. Checking data quality

The first step of the process of data filtering is simply to see what you have. The data are pro-
vided to us in a format called “fastq” that includes a quality score, which provides information
on how confident the sequencer is in its base calls. We will talk about this more in class, but the
basic idea is that for Illumina runs, the score (Q) is calculated as:

Q = —10x* lOgl()P (21)

Where ‘P’ is the probability that the base call is incorrect. Thus, a larger Q score indicates
greater confidence in the base call. These scores are encoded along with the sequence information
using the ASCII values corresponding to various characters with some offset to avoid the non-
printing characters at the low end of ASCII values. As a general rule, scores over 20 suggest high
quality data, while lower scores may be a cause for some concern. The steps below will walk us
through how to identify those scores in a useful way.

This, like most of the linux commandline steps, will occur on the computer cluster, so connect,
usign ssh, and let’s begin First, lets just look at one of the sequence files. Move to the project
directory, then use the command less to display the sequence file. Can you interpret those
quality scores? Neither can I, so we will need to use some programs to help us visualize it.

9

http://dilbert.com/strips/comic/2008-05-10/

Sequence processing and quality control

2.4. Setting up fastqc

Running this from the command line the first time takes a few extra steps. Primarily because
both java and fastqc will need to be installed. Both are slightly odd programs in that they do not
require an “installation” but only require loading the program and adding a few variables to call
them. First, we will install fastqc. All software that we download will be added to a directory
named “opt” (for optional), which we must create.

mkdir ~/opt

Now, we will move into that directory and download the code for fastqc. We will then unpack
(de-compress) it and delete the zip file. Finally, we need to set the permissions on the file to allow
us to run the program.

Please note here that rm works rather differently than you may be used to. There is no “Trash”
and there is no going back. Once you delete something with rm it is gone. So, it is generally good
practice to use the “-i” flag, which stands for “interactive” and will ask you to confirm that you

want to delete a file.

cd ~/opt

wget http://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.10.1.zip
unzip fastqc_v0.10.1.zip

rm -i fastqc_v0.10.1.zip

cd FastQC
chmod u+x fastqc

For java, copy the file “jre-7u51-linux-i586.tar.gz” from the shared directory into ‘opt’. You
will then extract the file and remove the tar file. We will then unpack (de-compress) it and delete
the zip file. Remember that tab autocompletion is a huge time and head-ache saver.

cd ~/opt

cp /N/dc2/projects/GCAT/workshop/jre-7ubl-1inux-i586.tar.gz .
tar -zxvf jre-7ubl-linux-i586.tar.gz

rm jre-7ubl-linux-i586.tar.gz

Now, we need to make it easier to run the program. Right now, it will only run if we type the
full pathway, which is a pain. Instead, we are going to add the path to an “Environmental Vari-
able” named PATH that tells the computer where to look for programs that you call. Importantly,
it searches these directories in order, so if you have two identically named programs, it will only
call the first one it finds. This also means we need to be careful not to accidentally remove part
of the path. The easiest way to do this is to add the paths that we want to our variable, without
deleting anything else.

export PATH=$PATH:$HOME/opt/FastQC:$HOME/opt/jrel.7.0_51/bin
echo 'export PATH=$PATH:$HOME/opt/FastQC:$HOME/opt/jrel.7.0_51/bin' >> ~/.bashrc

The first line adds fastqc and java to our path for this session, but that will be forgotten when
we next log out. The second line adds that command to a file named “.bashrc” in your home
directory, which is run every time you log on. Thus, from now on, FastQC and java will be in
your PATH.

10

Sequence processing and quality control

2.5. Running FastQC

Now, we are ready to analyze our data. Move into the ‘seqData” directory in the project folder,
this will keep all of our results together, instead of each running it in our own home folder. You
will each be assigned to a sequence file(s), which will be yours to take all the way through this
analysis. Each of you will execute the following, substituting your assigned file for fileName (note
that throughout this document, purple text like this should be replaced with your information).

cd /N/dc2/projects/GCAT/workshop/seqData
fastqc -o fastQCresults fileName

For each assigned file. Once this has completed, it will place a folder named “fileName_fastqc”
and a zipped version into the fastQCresults directory within seqData. From a terminal window,
download the directory via scp by using the commands discussed in the “Computer Setup”
module (See chapter 1) (Windows users, recall the workaround required from section 1.5). Note
the period at the end of the line, which tells the computer “save the file right here with the same

name. You can replace the ”.” with a different name for the file, or even a path to a different
location, if you want.

scp -r user®@mason.indiana.edu:\
/N/dc2/projects/GCAT/workshop/seqData/fastQCresults/file_fastqc

A few notes — you can leave the full scp line on one line, but it does not fit across the page
here. If it is on one line, make sure that there are no spaces between the colon and the start of
your path. Similarly, if you do leave it on two lines, make sure that there are no spaces between
the colon and backslash (”) or on the new line before the start of your path.

You can then open the results in a web browser by opening the directory and clicking on the
file “fastqc_report.html”. Look at the file, and see if there is anything you think needs to be done
to clean up the data. Compare the results to others around you, and we will discuss them as a

group.

2.6. Trimming bad data

There are two ways of filtering data: trimming ends that may have very low quality, or remov-
ing reads that are low quality. In general, short-read sequence aligners take quality information
into account, and so conservative trimming and filtering is not necessary. However, if you have
a run with very low quality ends, trimming those ends can help your analysis, especially if you
are assembly a de novo transcriptome (see chapter 7 for more info). This program suite will likely
be used later, and you will want it installed.

There are a number of tools designed to help you control read quality, each with their own
benefits. For today, we will use a program called "Trimmomatic’ because it does a great job of
explicitly handling paired-end data like these. This program requires java, which we already
loaded, but follow those directions if you need to start from this point. Set up the program with
the following:

cd ~/opt/

wget http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/Trimmomatic-0.32.zip
unzip Trimmomatic-0.32.zip

rm -i Trimmomatic-0.32.zip

To call this, we will use java, and simply pass the arguments we want to use. For more de-
tail on each option, go to the website: http://www.usadellab.org/cms/?page=trimmomatic. One

11

http://www.usadellab.org/cms/?page=trimmomatic

Sequence processing and quality control

note: paired-end data requires two outputs for each file, one for those that match the opposite
direction read, and one for those that don’t. The code below is an example that may be a helpful
starting point; note that the “\” at the end of each line means ‘put this all on one line; don’t hit
return yet’ and can either be copied in directly (and interpreted by the console), or omitted to
put everything on one line (interpreted by you).

Do not run this directly from the command line on the sequence files we have been using. The
files we are using are large enough that you need to use a different system (a script submitted
via gsub), which we will introduce in the next chapter (see section 3.6). If you would really like
to use this, make sure to run the head command first to create a sample subset of the data (or,
later, submit it as a script via gsub).

cd /N/dc2/projects/GCAT/workshop/seqData
head -n 4000 file.fq > smallExamples/subset_file.fq
cd smallExamples

java -jar ~/opt/Trimmomatic-0.32/trimmomatic-0.32.jar \
SE -phred64 subset_file.fq\
trim_file.fq \
CROP:85 HEADCROP:4 \
LEADING:3 TRAILING:3 \
SLIDINGWINDOW:4:15 MINLEN:30

By line, these commands:

¢ (Call the program

The input data and information

- 'SE’ for single end data
— the offset of the quality scores

— the input sequence files

The output trimmed sequence file

Tell the program to keep the first 85 bases then cut the first 4 bases

Cut the first (then last) bases, if the quality is below 3

Check windows of 4 bases and cut the sequence when the average score goes below 15;
only keep reads that are at least 30 bases long

We could then use these outputs in our downstream analyses.

2.7. Where to go for help

Most, if not all, of the programs that we use here have good webpages with substantial
information on the usage of their programs (linked below). In addition, sites like “seqAnswers”
and “BioStars” address many of the common issues that users encounter. Searches for these sites
(or just general questions) will often lead you to individuals that have already addressed, and
solved, the same challenges that you are facing.

12

Sequence processing and quality control

2.8. Further Reading

More information related to these topics can be found in:
® http://www.usadellab.org/cms/?page=trimmomatic.

® http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

13

http://www.usadellab.org/cms/?page=trimmomatic
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Sequence processing and quality control

14

Chapter 3:
Read Mapping

3.1. Background

RNA-seq read mapping is the process of aligning reads against a genome (or transcriptome)
in order to identify the position from which the RNA originated. This is another computationally
intensive task, as it is generally attempting to align millions of reads against thousands of genes
(or a full genome). In the case of alignment to a genome, the problem is further complicated
by the fact that the sequenced RNA contains only exons, while in the genome these exons are
substantially split by large introns. Even against transcriptomes, alternative splicing, skipped
exons, and a number of processing steps can complicate the process.

Thus, many of the standard alignment tools that were developed for pairwise sequence align-
ment (e.g. Blast) are not suitable for this task. However, many alignment tools are emerging
specifically designed to handle RNA alignment to genomes or transcriptomes. These tools use
much shorter alignment matches and are designed to detect splicing and gene graphs. They work
on similar principles to traditional alignment tools, and we will discuss them more as a group.

AN x64 PROCESSR 16 SLREANING ALONG AT BLLIONS OF
CYCLES PER SECOND To RN THE XNU KERNEL, WHICH IS
FRANTICALLY WORKING THROUGH ALL THE FOSIX-SPECIFED
PBSTRACTION T0 CREATE THE DBRWIN SYSTEM UNDERYING
05 X, WHICH IN TURN |5 STRAINING 1 TSELF To RUN FIRER®
AND IT5 GECKD RENDERER, WHICH CREATES A RLASH OBTECT
WHICH RENDERS IDZENS OF VIDED FRANES EVERY SELOND

BECAUSE T WANTED TO SEE A CGAT
JUMP INTO A BDX AND FALL OVER.

O I A A GOD.

Figure 3.1: xkcd.com/676 (Creative Commons Licencse)

3.2. Chapter goals
¢ Learn about RNA alignment
® Learn the basic premise of different read mapping tools
¢ Understand the basic principles of RNA mapping

¢ Understand how to utilize various mapping tools

15

http://xkcd.com/1168

Read Mapping

3.3. Choosing an aligner

There are several mapping tools available, and many are being developed specifically with
short, and/or paired RNA reads in mind, such as bowtie and tophat from the tuxedo package.
Bowtie is a fast read aligner, though it does not handle splicing explicitly. For aligning to a
genome, Tophat uses initial bowtie reads to predict splice sites, and then aligns more reads across
those junctions. Alternatively, if the transcripts are already known (through either transcriptome
sequencing, like with our sample data, or gene prediction), bowtie can be used to align directly
against known splice forms.

In this chapter, we will use a program called RSEM (RNA-Seq by Expectation-Maximization)
that uses the bowtie alignment of reads to known transcripts. The program offers alternatives,
including using the output from any aligner instead of using bowtie, that are discussed more
thoroughly in the documentation linked below.

3.4. Installing RSEM

The RSEM package is a simple one to install, but requires several other programs (dependen-
cies) to run completely. This installation will be broken into two parts, installing RSEM and in-
stalling those dependencies. First, move the directory in which you would like to install (~/opt),
then follow these commands, which may be starting to look familiar now. The addition of the
“make” command is necessary because RSEM needs to be compiled for the system’s architecture.
After running make, we add the path to our environment.

cd ~/opt

wget http://deweylab.biostat.wisc.edu/rsem/src/rsem-1.2.12.tar.gz
tar -zxvf rsem-1.2.12.tar.gz

rm -i rsem-1.2.12.tar.gz

cd rsem-1.2.12
make

export PATH=$PATH:$HOME/opt/rsem-1.2.12
echo 'export PATH=$PATH:$HOME/opt/rsem-1.2.12' >> ~/.bashrc

Next, we can add bowtie to our environment using a “module”. This is a method that is
slightly different than we used before, and its specific implementation will depend on the system
you are working in. The basic idea is that updates to shared software (software available to all
users) will be implemented more seamlessly this way. It is not available on all systems, but is a
nice feature of some computer systems, as it will automatically load the program, and add it to
our path, for us. As before, we are going to add the command to a profile to ensure that they are
loaded every time instead of manually loading each time we sign in (or run a script).

module load bowtie
echo 'module load bowtie' >> ~/.modules

3.5. Prepare for alignment

We now have all of the software we need set to go, and can begin working on the process that
will run the actual alignments. First, we need to generate our reference (either a transcriptome
or genome) so that the program has something to align against. This should only take a couple

16

Read Mapping

minutes, so we could run it directly from the command line. Move into the seqData directory.
Please, do not run this in the workshop unless told to — having multiple iterations of this run
simultaneously leads to corrupted files.

Only one student should run this:
cd /N/dc2/projects/GCAT/workshop/seqData/transcriptome
rsem-prepare-reference --transcript-to-gene-map isotig_gene_map.txt \
--no-polyA reference.fasta gcatRef

The files ‘reference.fasta” and ‘isotig_gene_map.txt’, contain the transcriptome in FASTA for-
mat and the list of isoform to gene mappings. The ‘gene_map’ tells the program which transcripts
belong to the same gene, which will allow us to analyze splice variants. The flag “--no-polyA’
tells the program not to append poly-A tails to the transcripts. This is used because some of these
transcripts may be partial, and should not include such tails. Finally, the last input ‘gcatRef” tells
the program where to write this file.

3.6. Run the alignment

The alignment we are going to run today will take several hours to complete (possibly days)
when running on full size files. None of you likely wants to sit here with your computer con-
nected for that long, despite how much you love this class. In addition, the some system will
only allow jobs submitted from the command line to run for a set amount of time (in the case
of Mason, 20 minutes) before it aborts them. This is done, in part, to make sure that large jobs
are balanced on the machine. So, today we will introduce a new method for running commands
on a computer cluster: a script and gsub. A script is just a series of commands to be executed (a
simple computer program), and gsub is the system that is used to control the running of those
jobs.

Remember that we are lazy efficient; so we are going to start by copying and modifying a
sample script. Copy the file ‘sampleScript.sh” from the project directory to your home directory.
Run less to see what is in the file.

cp /N/dc2/projects/GCAT/workshop/sampleScript.sh ~/myFileName.sh
cd ~
less myFileName.sh

It should look something like this:

Contents of file ~~sampleScript.sh'':

@ job_type = serial

@ class = NORMAL

Q@ account_no = NONE

#PBS -m e -1 vmem=10gb,walltime=1:00:00
@ notification = always

@ output = batch.$(cluster).out

@ error = batch.$(Cluster).err

@ queue

The top three lines give information on how the job should be run and charged, and aren’t
anything we need to worry about. The line with ‘PBS’” give several commands to the qsub pro-
gram, including to email you when the job is done (the -m e), how much RAM to let you use, and

17

Read Mapping

how long to let the job run. The vmem and walltime commands are required, as this is what the
system uses to balance the jobs that are submitted. The rest of the information tells the system
how to save your outputs, and that the job should go to the queue.

Below this, we are going to insert our commands. These can be anything that you would sub-
mit in the terminal, and the same syntax and rules apply, including spelling and capitalization,
so be careful. To add these commands, we are going to use a word processing program: ‘nano’.
Run the command ‘nano’ followed by the name of your script. It will open the document for
editing in a simple editor.

nano ~/myFileName.sh

The instructions at the bottom of the screen tell you how to run the program, but it is similar
to notepad, just without the click-able menus. To save a file, type ‘Ctrl+o’, name the file (or accept
the current name) and hit enter. To close the program, type ‘Ctrl+x’. Move to the bottom of the
tile (the mouse won’t work) and add the following commands:

Add this to your script using: nano ~/myFileName.sh

cd /N/dc2/projects/GCAT/workshop/seqData

rsem-calculate-expression --phred64-quals file.fq \
transcriptome/gcatRef align/file

The second line (wrapped above) calls the aligner, and runs the expression calculation. First,
we tell it that the file has an offset of 64. Next, we give it the name of our file to analyze; do
not forget to change the purple “file” portion to match your file name. We then tell it which
reference to use (the one we created above), and finally the output name, which includes the
directory where we want to save it, and the name of your assigned sample. The directory ‘align’
should already be created to ensure that your outputs are saved in the correct place (create it
using mkdir if it doesn’t exist). Save the file (Ctrl+o) and exit (Ctrl+x).

You will notice that this line only works on one sample at a time. If you want to run this for
multiple files, you will need to write a line like the above for each of your samples. Once you are
more comfortable with the Linux syntax, you may also want to explore GNU Parallel. However,
that syntax is beyond the scope of this tutorial.

Now, we will submit the job with this command:

gsub ~/myFileName.sh

and now we wait. We can see the progress (if any), by calling ‘gstat” which shows all running
and queued jobs. If your run:

gstat -u userName

You will see only your submitted jobs. Run 1s in your home directory to see if there are any
output files yet, and use less to view them. They should be similar to the outputs you would
expect to see in the terminal.

3.7. Where to go for help

Many computer systems use a very similar job manager, and so a search for most of the key-
words we have used in this chapter may help solve the problem that you are facing. In addition,

18

Read Mapping

the man pages for ‘qsub” and ‘gstat’ contain a great deal of information on the submission of
jobs. Finally, the ‘Further Reading’ includes the websites for each of the programs we used today,
and they have extended discussions of many available options.

3.8. Further Reading

More information related to these topics can be found in:

http
http
http
http
http

http

://tophat.cbcb.umd. edu/manual. shtml
://bowtie-bio.sourceforge.net/index.shtml
://bowtie-bio.sourceforge.net/manual.shtml
://cufflinks.cbcb.umd.edu/
://deweylab.biostat.wisc.edu/rsem/

://deweylab.biostat.wisc.edu/rsem/README. html

19

http://tophat.cbcb.umd.edu/manual.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/manual.shtml
http://cufflinks.cbcb.umd.edu/
http://deweylab.biostat.wisc.edu/rsem/
http://deweylab.biostat.wisc.edu/rsem/README.html

Read Mapping

20

Chapter 4:

Differential Expression

4.1. Background

Now that the reads have been quality checked, assembled, and aligned, there is finally a bit of
biology that can be directly addressed. In this module, we will start by examining differences in
gene expression between our sample groups. The analysis today will use just one of the programs
currently available to assess gene expression differences (and more are constantly emerging). We
will discuss a few of the fundamental principle of gene expression and use this program as
an example. However, you may find that you like the interface (or assumptions) of a different
program better. There are plenty of options available.

The commonality to all of these approaches is that they all attempt some form of normalizing
for read count (we accomplished this once already by calculating fpkm along with raw read
counts) and then use a combination of modeling and basic statistics to determine if two groups
differ in expression. This raises a very large problem of multiple testing: with a p-value of 0.05,
we expect 5 in every 100 tests to be false positives. Obviously, when dealing with thousands of
genes, that number overwhelms the real results. There are a number of proposed corrections
(choosing the top X most-significant genes a priori, setting a stricter p-value a priori, etc.), but
we are going to focus today on the False Discovery Rate (FDR). FDR calculates an acceptable rate
of false/ to true/positives in a data set, rather than relying on raw p-values. It uses the p-values
strike this balance, usually at 0.05, or 1 in 20 positives expected to be false-positives.

DID THE SUN JUST EXPLODE?
(ITS NISHT, S0 WERE NOT SURE,)

THIS NELTRINO DETECTOR MEASURES

WHETHER THE SUN HAS GONE NOVA,

THEN, TROUS TWO DICE. IF THEY
BOTH COME UP 5iX, ITUES TO US.
OMHERWISE, ITTELLS THE TRUIH.

LETS TRY.
LETTIOR! HAS THE
SN GONE NA? i

& o

FREQUENTIST STARSTICIAN: BAYEBIAN STRATISTICAN:
THE PROBABIITY OF THIS RESULT

HAFPNING BY CHANCE 15 33=0027 BET YOU $50
SMCE <005, T CONIUDE IT HANT:
THAT THE SUN HAS EXPLODED:)

Taal

Figure 4.1: xkcd.com /1132 (Creative Commons Licencse)

21

http://xkcd.com/1132

Differential Expression

JELLY BEANS WE FOUND NO THAT SEMLES THAT,
CAUSE ACNE! LINK BETWEEN .
T HEAR ITS ONLY
SCIENTISTS! JELY BEANS AND A CERTAN COLOR
INVESTIGATE! ANE (P> 0.05). THAT CAUSES IT.
BUT \
L Fane SCIENTISTS! /
[{ Bur
.. FINE. MulMECRRFT!
% K @ \.\\
WE FOUND NO WE FOUNDNO WE FOUND NG WE. FOUND MO WE FoUND NO
LINK BETWEEN LINK BETWEEN LINK BERWEEN LINK BETWEEN LINK BETWEEN
PURPLE JELLY BROWN JELLY PN JELLY BLWE JELY TEAL JEUY
BEANS PND ACNE BEANS AND ALNE. | | BEANS AND ACNE BEANS AND ACNE BEANS AND ANE
(P>005). (P>005) (P>0.05). (P>005). (P>0.05).
/ / / ! /
WE FOUND MO WE FOUNDNO WE FOUND NO WE FOUND NO WE FOUND'™NO
LINK, BETWEEN LINK BETWEEN LINK GEWEEN LINK. BETWEEN LINK BEWEEN
SALMON JELLY RED Jewy TURGUOISE JELY | | MAGENTA JELLY YELLOW JELy
BEPNS AND ACNE. [BEANS AND ANE BEANS AND ANNE. BEANS AND ACNE. BEANS AND ANE.
(p>0.05) (p>0.05). (P>0.05), (P>0.05), (P>005)
/ / / / /
WE FOUND NGO WE FOUND NO WE FOUND NG WE FOUND A WE FOUND ND
LINK, BETWEEN LINK, BETWEEN LINK GETWEEN LINK, BETWEEN LINK BETWEEN
GREY JELY TAN JELY v JeLy GREEN JeLLY MALVE TELLY
BEANS AND ACNE. BEANS AND ACNE BEANS ARD ANE. BEANS PND ANE BEANS AnD ACHNE.
(p>005). (p>005), (p>0.05) (p< o.olls), (p>005)
/ / / /
@ @ @ oAy @
WE FOUND NO WE FOUND NO WE FOUND NG WE FOUND NG WE. FOUND'NO
LINK BETWEEN LINK GETWEEN LINK BEWEEN LINK GETWEEN LINK BETWEEN
BEIGE JELLY LiAc JELY BLACK, JELL PERCH JELLY ORANGE JELLY
BEANS PHD ACNE BEANS AND ANE BEANS AND ACNE BEANS AND ACNE BEANS AND ACNE
(P>0.05). (P>005) (P>0.05) (P>005). (P>0.05)
/ / / ! !

- g -
u e ———
S ——

5'4 CHANCE =y .
%NQDENCE! SCIENTIS..

T:es . =l
e s 5

Figure 4.2: xkcd.com /882 (Creative Commons Licencse)

22

http://xkcd.com/882

Differential Expression

4.2. Chapter goals
¢ Discuss the concepts behind gene expression analysis

¢ Discuss statistical balance between false/positives and false/rejection

Learn the basics of (at least) one differential expression analysis program

Understand the basic principles managing large datasets

Understand the statistical principals of large datasets

4.3. Prepare R

This chapter will utilize the R statistical environment to conduct our analyses. R is an incred-
ibly powerful statistics package designed with high quality graphics explicitly in mind, which
makes the default plots it produces elegant while allowing users full control over the outputs.
In addition, this flexibility extends to the handling and display of raw data, making it possible
to store, manipulate, and analyze a wide variety of data types in a single program. This flexi-
bility comes at the cost of a large learning curve, especially as many of you are probably new
to computer programming. Finally, R is free, both free as in beer (no cost) and free as in speech
(the source code is available, can be manipulated, and can run on any platform), making it an
accessible choice for students and researchers.

If you have not used R before, please consult an R tutorial before proceeding, such as the one
provided with this document. Without it, you will still likely be able to complete this section,
but you will struggle to understand the syntax that is being presented. At the least, you will
need to install R, available, with instructions, at: http://cran.r-project.org/bin In addition, it is
also strongly recommended that you install the graphical interface RStudio to make R more
comfortable to use, available at: http://www.rstudio.com/ide/download/desktop.

4.4. Download data

A note to users looking to run this type of analyis on a complete dataset. You will have
noticed that, to this point, we have been analyzing each of the sequence read files separately.
This is great for learning what is happening, but is not so great when you are trying to analyze
a full experiment, which may have anywhere from 6 to 100 samples easily. There are, however,
much faster ways to analyze multiple samples, in parallel, though they are outside the scope
of this manual. For an example of such scripts, using these data, please see the git repository
https://bitbucket.org/petersmp/publishedtutorials/.

Many of the tools for differential expression can be run directly from the command line,
including the steps that we are going to run below. However, it is often easier, especially when
first running analyses, to run them on your local machine. Here, we will download the count
data, and start running some basic analyses on differential expression. To do this, first move
all of the results of interest (here, the “genes.results” files) into a single directory, to make the
download easier. Because we will be analyzing all of the samples, this only needs to be run once,
not by each participant.

Only one student should run this:
cd /N/dc2/projects/GCAT/workshop/seqData
mkdir geneResult
cp align/*genes* geneResult/

23

http://cran.r-project.org/bin
http://www.rstudio.com/ide/download/desktop
https://bitbucket.org/petersmp/publishedtutorials/

Differential Expression

This copies all of the files containing the word “genes” from the “align” directory into our
newly created geneResult” directory’. Now, on your local machine, move (cd) to a directory for
this workshop, then download that entire directory, and the annotation information with:

On your local machine:
cd /path/to/your/directory/
scp -r user®Omason.indiana.edu:/N/dc2/projects/GCAT/workshop/seqData/geneResult .
scp -r userOmason.indiana.edu:/N/dc2/projects/GCAT/workshop/seqData/annotations .

Which will download our “geneResult” and “annotations” directories to where you are (note
the “.” which again tells scp “right here”).

4.5. DESeq

Several alternatives exist, including other command line options, such as RSEM, cuffdiff, and
a number of packages in R, including limma, cummeRbund, EBSeq, and DESeq. In this section,
we will focus on the R Bioconductor package DESeq, which is fast, flexible, and which I have
used extensively. DESeq utilizes a negative binomial distribution and offers several alternative
approaches for significance testing. Covering the theoretical background of this package, espe-
cially in contrast to others, is beyond the scope of this workshop. Instead, please refer to the
publication describing DESeq and comparing it to other methods (see section 4.8).

The general steps of the DESeq pipeline are:

¢ Combine count data (such as from RSEM) into a single file

Normalize the read counts to account for sequencing depth differences
¢ Estimate variance (called dispersion) for each gene

¢ Compare expression between groups, and

Calculate significance

Each of these steps are relatively common, though there is some discussion over the best way
to handle dispersion and significance. For a more detailed description of these steps, and the
underlying theory, please refer to the vignette for DESeq (see section 4.8). For this workshop,
along with other projects, I have written an R package, rnaseqWrapper, that wraps these steps
into a single function, with sensible defaults. For those of you accessing these materials from
outside of the workshop, please contact me directly for the most updated version of the package.

4.5.1. Install rnaseqWrapper

To install this R package, open RStudio (this will also work in R directly) and follow these
steps (only necessary the first time you install it, or if you update it). Note that the additional
dependencies are only required by a few of the functions, but that includes the ones you will be
using in these chapters. This will likely take five to ten minutes.

install.packages('rnaseqWrapper')

source("http://bioconductor.org/biocLite.R")

24

Differential Expression

biocLite(c("topGO","Rgraphviz","DESeq"))

library(rnaseqWrapper)

4.5.2. Running DESeq with rnaseqWrapper

As before, we need to start by loading in our expression data, using the outputs from RSEM.
So, use setwd() to navigate to the directory in which you saved the data files above. You will
likely want your working directory to be (at least) one level above the directory where you
saved the data, largely to make it simpler to create analysis output directories, but that is just
personal preference of mine. Once the data are downloaded, the following function (part of
my rnaseqWrapper package) will automatically read in and merge the files together, naming
each column using the file names. Read the help file for more information if you are interested
(?mergeCountFiles).

setwd ("path/to/data/")
countData <- mergeCountFiles("geneResult/")

head (countData)

As you can see, the files are now merged, and we can work with them together. Now, DESeq
expects count data, as its internal normalization, and the method it uses to determine significance,
rely on raw counts. The SEM column “expected_count” is roughly raw counts, with just a small
amount of uncertainty given for the assignment of reads. As such, we can use those columns for
DESeq, but we need to let DESeq know that they are counts by rounding the data to integers.
To extract those columns, we will use the function grep() which searches for matches between
its first argument (e.g. “expected_count” below) in its second argument (e.g. the names of the
columns) and returns the index (position) of the matches. I also like to remove the common
portion of the column names, using gsub(), which adds an argument to replace the matched
portion of the text. Both accept regular expressions, which makes them very powerful, but also a
lot more confusing. For now, just know that gsub () is a nice way to systematically change things,
and that you can replace the empty quotes (“”) with different text if you just want to change the
names (e.g. to “_reads”).

myCountData <- round(countDatal,grep(".expected_count",names(countData))],0)

names (myCountData) <- gsub(".expected_count","",names(myCountData))
head (myCountData)

Finally, we can run DESeq on these rounded data. For now, the basic defaults will work just
fine, but read the help documentation for more information on how you might tune this for your

own project. For now, it is enough to know that the function takes your count data, searches for

25

Differential Expression

the “conditions” (e.g. sexes or treatments) in the column names, runs a differential expression
test, and saves the results (both as an R object, and in your working directory, preceded by the
“outNamePrefix”). If your samples don’t include your treatment names, you can also specify
“conds”, which lists each sample’s treatment.

deOut <- DESeqWrapper (myCountData,
conditions=c("male","female"),
outNamePrefix="DESeqTest/")

This function goes through all of the basic steps of DESeq. Occasionally, especially with very
small or low-count data, this function will throw an error stating that the dispersion method
failed. This means that the default included did not work, and may indicate problems with the
underlying data. In the future, the package will offer alternatives for this step, and other steps,
but for now, you will have to work through each step separately, in order to solve this problem.

The function saves the outputs in a few different, useful, formats:

¢ A series of pdf plots that show some basic characteristics of the data

Tab-delimited output of the differential expression test

Tab-delimited output of the normalized read counts (if requested), and

An R object which we can directly manipulate.

The first few items are all useful for record keeping and visual inspection. Open up the
directory where you saved the data, and look at the plots it generated. The last item holds all
of the generated data (but not plots) in a single object, which allows us to explore our results in
more depth. So, we will save it now to make it easier to reload in the future (instead of having to
use read.table() for each element) when you start analyzing our data. Use the below code to
save the R object.

save (deQut,file="DESeqTest/de0ut.Rdata")

Before exiting R, spend a few minutes playing with the data you have just generated. Make
some plots, see what is available, and just generally fiddle. As you read the next section, and we
discuss it, play with the data you have, and think about what you might do with it to meet the
objectives of your study.

One place to consider starting is by generating a heat map, one of the standards in gene ex-
pression analysis. R makes this very easy to do, and the rnaseqWrapper package includes a wrap-
per to make it (somewhat easier). A similar plot is automatically generated by DESeqWrapper ()
and saved in the pdf output, but this will give you the power to tweak the plot to your purposes.

myQvals <- deOut$deOutputs$malevsfemale$pad;

toPlot <- as.matrix(myCountData[myQvals < 0.05 & !is.na(myQvals),])

heatmap.mark (toPlot)

26

Differential Expression

heatmap.mark(toPlot,
cexCol=.9,
ColSideColors = rep(c("red","blue"),each=8),
scaleLabel="")

legend (x="topleft",inset=c(-.01,.13),
bty="n", cex=.5,
legend=c("female","male"),
fill=c("red", "blue"),
title="Conditions")

4.6. Interpreting differential expression analysis

This section provides a thin background on differential expression analysis that will be used
to guide our in class discussion. Hopefully, the details in this section will help to guide your
decision making for your own data interpretation.

There are a plethora of gene expression analysis tools, and there seem to be more emerging
every week. Some of these are just small tweaks to increase speed or user/friendliness, but some
make major changes to the underlying assumptions and math. In particular, different differen-
tial expression tools rely on different mathematical models (e.g. normal vs. negative binomial
distributions) to estimate the probability that identified differences are real. The choice of which
program is best for you and your data is unique, and must address ease of use, mathemati-
cal assumptions, the details of your project, and what you are attempting to achieve. For most
analyses, the results will be relatively similar, and there are few bad choices.

All of these programs, and likely all of the ones still to come, will give outputs in a similar
fashion. A table with each analyzed gene as a row. The columns will represent the basic statistics
and may include: average expression level (for each group or for the two combined), difference
between the two (fold-difference, or log-fold-difference), a statistical test, and the FDR level of
significance. No matter what your specific project, focusing on the significant genes (those below
an a priori FDR cutoff) and the direction of their difference is likely to be most fruitful. Many
programs will write just these genes to a separate file to make this analysis easier.

From here, there are many options to progress. One is Gene Ontology (GO) analysis. If your
species annotation includes GO terms, you can determine which GO terms are over/represented.
As above, there are many programs for doing just this and they all work on similar principles.
The idea is to find GO terms that are more common among significant genes than among the full
set of annotated genes. That is, a GO term that is present 5 times among significant genes (that
is, 5 of the significant genes are annotated with that GO term) is more likely to be meaningful
if there are only 5 genes with that annotation in the full set, than if there are 50 genes with that
annotation. GO analysis provides a nice snapshot of what is being regulated differently between
your two groups.

Alternatively, you can focus on individual genes that are differentially expressed. This is
particularly fruitful if you have an a priori reason to expect a gene to vary. For example, if your
sample groups are a model for a disease or developmental state, you may expect known marker-
genes to differ between the groups. Identifying such differences can help to confirm the validity
of your experimental set up. In addition, you can search through the gene lists for genes that may
play interesting and related functions. Identifying these genes may help to guide future research
projects or to connect your findings to those of other research systems.

These approaches are neither exhaustive, nor mutually exclusive. The simplest answer to
“what should I do now?” is to play with your data and see what emerges. You may be surprised

27

Differential Expression

to find a set of key genes from another system (another disease, for example) differentially ex-
pressed between your groups. Breaking down the gene lists (e.g., by GO term, by pathway, or
even randomly) will allow students a great deal of autonomy and may lead to some surprising
and insightful conclusions as they dig deeply into a subset of your analysis.

4.7. Where to go for help

Differential expression analysis, despite being studied for a long time now (qPCR, microar-
rays, Northern blots, etc.), is still an unsettled field. Especially as datasets grow (now analyzing
tens of thousands of genes simultaneously), there is great debate over many basic questions. How
can we best control for known and unknown sources of error? How should multiple-testing be
corrected? How can we ensure we don’t reject too many true differences? Does fold-change mat-
ter?

The downside is that there are many open questions and there are rarely simple answers. You
may need to analyze your data in several different fashions in order to figure out what works
best for your system, questions, and needs. The upside is that there is not one “right” way to
do things, which allows both you and your students substantial leeway to explore your data in
novel ways. Who knows, your approach may even revolutionize the field.

All this is to say: the answers for how to best analyze your data probably lie in your data,
not with someone else. Answers to simple questions abound on places like SeqAnswers, and in
the documentation to your programs of choice. However, you may need to try several different
approaches before the answers you get seem to completely address the questions you started
with. List-serves and outside guidance are great to make sure that we are not fooling ourselves,
and should be utilized whenever possible. Just, don’t expect a clean answer.

As a final note, it is easy with large datasets to fool yourself. It is important to get critical
external feedback to your methods. Simulating your data analysis can also be a great way to make
sure that your results are not just a product of some unseen bias. I came three days away from
submitting (in a revision no less) an analysis that was, quite frankly, completely wrong. I had
simulated at a downstream step, and missed an underlying artifact in my data. The conclusion,
around which I had based most of that paper and several talks, was just flat wrong. It was an
artifact and did not represent anything meaningful. Be careful in your analyses, and always listen
when others raise concerns about your approach.

4.8. Further Reading

More information on the DESeq package, including the full package vignette and a link to the
full paper (available open access at the link below) can be found at:

® http://www.bioconductor.org/packages/release/bioc/html/DESeq.html

® http://genomebiology.com/2010/11/10/R106/

28

http://www.bioconductor.org/packages/release/bioc/html/DESeq.html
http://genomebiology.com/2010/11/10/R106/

Chapter 5:

Functional group analysis

5.1. Background

After all the hard work of generating RNA-Seq data, one is rewarded with a (hopefully) long
list of genes differentially expressed between treatments, or mutants, or tissues, or whatever you
were testing for. ... Now what?

Human nature expects highly meaningful genes to leap to the top of these hard-earned lists,
but in reality there are usually hundreds to thousands of differentially expressed genes and
too much information to easily comprehend or summarize. How can we extract meaningful
information from such large lists?

One approach is to consider what kind of genes are being affected. From a gene list, especially
a long one, it is difficult to see a larger pattern of gene types being affected, in part because it
would require knowing what every gene does. This is where Gene Ontology (GO) annotation
comes in. The GO system is a heirarchical set of gene function annotations, which has become
the de facto standard across all species. This works because the functions are defined in a way
that applies from plants to animals to bacteria.

This annotation is assembled into a “graph” to show the ways that functions are related.
For example, a hormone receptor might be annotated with the function “response to hormone”
and when more is learned, further assigned to the more specific function “response to steroid
hormone.” Further, genes can be assigned to any number of functions, reflecting the wide range
of roles that any given gene might play. Our hormone receptor, for example, might also be
annotated as “sequence-specific DNA binding” if it plays a role in regulating gene expression.

By utilizing this type of annotation, we can move beyond a list of (often cryptic) gene names.
A list of affected functions is much smaller, and often much more intuitive to interpret. This can
make presenting a coherent story around your data much simpler, and is a great guide for both
the investigator and readers. In this chapter, we will cover the basics of these analyses, and how
to conduct them.

Data Information

Knowledge

Presentation

Figure 5.1: epicgraphic.com/data-cake/

29

http://epicgraphic.com/data-cake/

Functional group analysis

5.2. Chapter goals
¢ Understand the basics of GO annotation
¢ Understand the statistics of GO analysis
* Be able to run a GO analysis

¢ Be able to interpret the output of a GO analysis

5.3. Basic statistics

Functional group analysis aims to determine which GO annotations are enriched (over-
represented) in subsamples of gene lists (e.g., differentially expressed genes; referred to as “DE”
below). Functional annotations that appear disproportionately among DE genes are likely to play
a role in the phenotypic response to your test; those that appear with equal probability in DE
genes and all genes are not.

In Table 5.1, we see that we are trying to show that there are more genes in the “A” position,
than expected by chance. Put simply: we want to know if the ratio % is significantly greater
than the ratio §. In this way, a GO function assigned to 11 genes in the dataset, 10 of which are
significantly DE, is much more meaningful (and over-represented), than a function assigned to
300 genes, 10 of which are significantly DE.

is Sig DE not Sig DE
Has GO term A B
Not this GO C D

Table 5.1: Depiction of functional group testing

To put this more formally, functional analysis asks whether the distribution of GO annotation
and significance are indepenent. These analyses generally use familiar statistical principles for
contingency tables, such as Chi-square and Fisher’s exact tests. The p-values from these tests
reflect the probability of enrichment of particular functional groups among DE genes. However,
because many tests are being performed, we must adjust for multiple testing, generally using
false discovery rate correction (similar to what we used in Chapter 4).

One important point to consider is what set of genes should be included in the background
(full) set. It is tempting (and often a default for many programs) to use all of the genes in the
genome as reference set. However, experiment-specific detected genes are almost always more
appropriate background lists. Because one tissue may not express all genes, the use of a genome-
wide background will then also reflect tissue specificity, which is presumably of less interest. In
addition, if many genes from a functional group are not expressed, they cannot be DE, which
means that, even all of the expressed genes in the group are DE, the GO category may still not
be identified as over-represented.

Finally, be aware that the statistical power of functional group analysis is highly dependent
on the number of genes in the selected list. Lists of 1 to 10 genes have little power to detect
enrichment of functional groups whereas 300 to 3,000 DE genes are ideal in experiments with a
background list of 5,000 to 20,000 genes.

30

Functional group analysis

5.4. Getting GO annotations

Unfortunately, despite the standardization of the GO system, the identification of GO terms
for your organism can still be tricky. Each study system is different, each has their own reposito-
ries, and those may (or may not) be directly linked to the gene names in your particular reference.
So, head to trusty google, and start looking for resources for your organism. If you hit problems,
seek out assistance from colleagues, or list serves (including the GCAT-SEEK listserve). Others
have probably faced (and overcome) the same hurdles you face, and they are often happy to help.

This problem is worse in species with limited genomic resources, as non-model species have
little or no GO functional annotation. This lack can be overcome by determining the best hit
(generally at the protein level using blastp) for each gene against a (hopefully closely) related
model species (such as Drosophila, Arabidopsis, Mus, etc.). Tools, such as Blast2GO, can greatly
simplify this process, but know that it is likely to take a long time.

Results carry the assumption that blastp homology confers meaningful information about
function across distantly related species. Conservation of gene function is sufficiently strong that
this is a fairly safe assumption. However, inferences about the function of specific genes remains
putative and should be treated as such. The key is to recognize both the possibilities and the
limitations, and neither discard the bad because it isn’t perfect, nor over-interpret the good as if
it were perfect.

5.5. Run a GO analysis

Finally, we are ready to run a GO analysis. There are a lot of tools available to run these
analyses, including graphical programs (such as BiNGO in Cytoscape) and web based tools
(such as David, described in Section 8.6). A full, and very long, list of such tools is available
at: http://neurolex.org/wiki/Category:Resource:Gene_0Ontology_Tools, if you are interested.
However, today, we will be working with the R package topGO from BioConductor.

In RStudio on your computer, load the topGO and rnaseqWrapper packages, which you in-
stalled in Section 4.5.1 (remember that a package only needs to be installed once on each com-
puter).

setwd ("path/to/data/")

library(topGO)
library(rnaseqWrapper)

Then we will load our annotations, which you downloaded with the RSEM results. This
includes a list of GO annotations developed for the dark-eyed junco, in a format usable by topGO.
Your GO annotations may come in a different format, so take note of the structure in the tsv file
to guide you.

goAnno <- readMappings("annotations/goAnnotation.tsv")

31

http://neurolex.org/wiki/Category:Resource:Gene_Ontology_Tools

Functional group analysis

We also need to load in the DESeq results (saved in Subsection 4.5.2).

deOutName <- load("DESeqTest/deOut.Rdata")

myDE <- deOut$deOutputs$malevsfemale

Now, we need to identify our “expressed” background.

expGenes <- myDE$id[myDE$baseMean > 5]

...and our significantly DE genes. Note the use of “!is.na(myDE$pval)” This tells R to ignore
unassigned p-values (such as for genes with no counts), otherwise R doesn’t know what to do
with NA values, and returns a lot of “NA” to warn us of that.

sigGenes <- myDE$id[myDE$pval < 0.05 & !is.na(myDE$pval)]

Now, we can run a basic GO analysis, using a wrapper from the rnaseqWrapper package. The
function runGOAnalysis() takes our lists of genes, and GO annotations, and runs all of the tests
for us. It defaults to running the “Biological Processes” ontology, but can also be set to analyze
“Molecular Function” or “Cellular Component.” Check out the help for more details on available
options. Here, we are going to run the analysis with the “classic” algorithm, which works just as
we described above: running a Fisher’s exact test on every GO term we are analyzing.

goOutput <- runGOAnalysis(sigGenes,expGenes,goAnno,
pValThresh = 0.05, plotGO = TRUE,
algorithm = "classic")

head (goOutput)

Note that in the returned plot, darker colors are more significant. See also that an entire series
of GO terms is often calculated as over-represented. If only the very bottom node is truly over-
represented, but by a large degree, it can cause the higher nodes (which are also assigned to the
genes of the lower node) to appear over-represented as well.

Imagine, for example, that all 10 genes annotated to a low-level GO term (say “negative
regulation of DNA ligation”) are DE. This GO term is clearly over-represented. But, imagine
that in the next level up (“regulation of DNA ligation”), there are 5 additional genes (perhaps
“positive” regulators), and none of them are DE. In most data sets, 10 out of 15 genes will still
be scored as significantly over-represented, even though it is only the “negative” regulators that
we are interested in.

This non-indepenence makes it difficult to know how to interpret each of the significant
terms, and leads to large philosophical questions on the appropriate multiple-testing correction.
However, the topGO authors have come up with a solution to this problem. Essentially, they test
to see which node in a chain is the most over-represented, and adjust their p-values to reflect that.
The math is quite complex, and beyond the scope of this tutorial; however, the paper describing

32

Functional group analysis

the approach is listed in Further Reading below. In the end, it gives us a smaller list of GO terms
that is more focused on the real source of differnces. We can see it in action by comparing our
results from each method directly:

goOutputWeight <- runGOAnalysis(sigGenes,expGenes,goAnno,
pValThresh = 0.05, plotGO = TRUE,
algorithm = "weight")

head (goOutputWeight)

You can flip back and forth between the plots using the blue arrows at the top of the plot
device. Doing this, you should be able to quickly see the difference between the two algorithms.
You can also view the full data sets to see that many more GO terms were included in the classic
approach, though they may not be more informative.

A few notes on significance testing are needed here. The authors of the weight algorithm
argue that their approach implicitly accounts for both multiple testing and the dependency of
the GO graph, and so argue that the returned p-value does not need correcting. It is up to you,
and your research question, to decide where to draw the threshold for significance. As with the
GO annotations themselves, the trick is to find the right balance of conservative approach to
neither over- nor under- interpret your data.

5.6. Where to go for help

For more information on what is possible in topGO check out the help pages, or visit their
website (listed in further reading). In addition, check out statistics sources (textbooks, professor,
wikipedia, etc.) for more information on the underlying tests being performed.

5.7. Further Reading

More information on the topGO package, including the full package vignette and a link to the
full paper (available open access at the link below) can be found at:

® http://www.bioconductor.org/packages/release/bioc/html/topG0.html

® http://bioinformatics.oxfordjournals.org/content/22/13/1600.short

33

http://www.bioconductor.org/packages/release/bioc/html/topGO.html
http://bioinformatics.oxfordjournals.org/content/22/13/1600.short

Functional group analysis

34

Chapter 6:

Variant Detection

6.1. Background

Everything before this chapter could have been done using microarrays. There is debate in
the literature about when RNA-seq and microarrays are more accurate; however, there is one area
in which there is a clear winner. RNA-seq analysis adds the ability to detect genetic differences.
This added benefit provides a whole new world to explore.

This chapter will work through the very basic levels of genetic analysis of RNAseq data.
Where you take it from there is up to you. With the small sample sizes of most of the groups
here, population genomic tests may be out of reach. It may, however, be possible to focus on
genes of interest (e.g., those in known pathways or those identified as differentially expressed)
to add an intriguing layer to your classroom analysis. In addition, with model systems, the role
of many of these genetic variants may be known already. For now, we will simply focus on the
tools that are available, and the analyses that are possible. There are many different options for
the tools to use, but many rely on the same bowtie outputs generated for expression analysis.
Today we will use just one of the downstream options.

This chapter is likely to contain less detail than others on the process, and I strongly encourage
you to read the documentation included in “Further Reading” before applying these approaches
to your project. Like differential expression, genetic variant detection is suffering from a crisis of
statistics. The datasets are far larger than can be handled by many of the early variant detectors
(or population genetics methods), and new methods are lagging behind the increases in sequence
production. The biggest problem is differentiating between sequencing/alignment errors and
true variants.

DID My GENETIC WE CANT BE SURE AROUT | AT SOME. POINT, YOUR
TESTS COME BACK? THIS, BUT WEVE ANALYZED PARENTS HAD SEX.
GENES ON SEVERAL OF YOUR
, SITDOWN. OH GoD!
15 rrgqf:;; (i CHROMOSOIES, AND IS HARD STWO'-\LL! Ims
ARE MY Tty AVOID THE. CONGLUSION: POSSIBLE. T WAS)
RISK FACTORS? JUST ONCE !
' T... T NEED
TORE ALONE.
\

S T
e

Figure 6.1: xkcd.com/1168 (Creative Commons Licencse)

6.2. Chapter goals

® Learn the basics of SNP detection and ideas for where to go next

¢ Understand the basic principles managing large datasets

35

http://xkcd.com/1168

Variant Detection

¢ Understand the statistical principals of large datasets

6.3. Set up the software

We are going to be using a tool named VarScan in this chapter, which requires the samtools
package as support. Samtools is available as a module on many computer systems, and VarScan
is a simple java file (like Trimmomatic). Recall that we have previously installed and loaded java,
but if you missed that step, you will need java to run the below (see section 2.4). To install these
tools, use the following commands, which first download VarScan, then load samtoools, then set
samtools to load automatically.

cd ~/opt
wget http://downloads.sourceforge.net/project/varscan/VarScan.v2.3.6.jar

module load samtools
echo 'module load samtools' >> ~/.modules

6.4. Prepare the alignment file

For this example, we will create an alignment file from a small subset of our read files. To
run this for a more complete analysis, it would be necessary to run both this step (preparing the
mpileup file) and the next step (analyzing the output) in a script submitted via gsub.

Move into the directory with the sample sequence files, then each of you will analyze a couple
of the samples (the sample you were assigned previously, plus one other of your choice). Note
that we are using the same reference as what we used for REM, but we need to call the FASTA
file directly. Below, file is the output from the rsem-calculate-expression run in section 3.6,
and file? is any additional file (i.e., one created by another student) from the directory.

cd /N/dc2/projects/GCAT/workshop/seqData

samtools mpileup -f transcriptome/gcatRef.transcripts.fa \
align/file.transcript.sorted.bam \
align/file2.transcript.sorted.bam \
> tempData_yourName.mpileup

This creates an encoded file containing a lot of information about the aligned sequence file.
Use less to take a look at it. As you can see, we need something to help us interpret it. That is
where VarScan comes in.

6.5. Run VarScan

VarScan is written as a java file, which means we call it by calling java for the command of
interest and passing the options we want. Below, we call the mpileup file we just created, pass it
a threshold p-value of interest, then use the redirect (">’) to save the output. We are accepting all
of the defaults from mpileup2snp, but we could set several options to control the exact output.
Look at the documentation linked in “Further Reading” (section 6.8) for more details and to
understand the output.

java -jar ~/opt/VarScan.v2.3.6.jar mpileup2snp \

tempData_yourName.mpileup \
-p-value 0.01 > tempVarScan_yourName.txt

36

Variant Detection

Use less to look at the file. Remember here that we only have a small number of reads and
samples, so the data are likely to be less than complete. To explore these data more fully, down-
load the output file (using scp) and load it into R using read.table(). From here, there are
several functions in the rnaseqWrapper package that might help you explore the data, though
many of these assume that the reference contains only an in-frame coding sequence (e.g., pre-
dicted cds), which we don’t have for these data (the fasta reference is not necessarily in-frame,
and frequently includes un-translated regions). However, for your projects, these may be useful:

parseVarScan Separates the columns of varScan output format, which improves some us-
ability. This step is not needed for downstream use, but may still prove helpful for other
applications.

kaksFromVariants Calculate Ka/Ks ratios using the identified variants

nSynNonSites Calculate the number of synonymous and non-synonymous sites in genes
from a reference. Useful to complement the Ka/Ks output for genes with no identified
variants.

determineSynonymous Determines whether each variant is non-synonymous or synony-
mous compared to the reference position. Also calculates dN/dS (wihout respect to sites).

calculateThirdPosBias Calculate the portion of variants (in each gene) at each codon posi-
tion. A nominal proxy for Ka/Ks and dN/dS, if needed. When no reference is used, it
assumes the most common variant position is the third position.

6.6. Run a more complete analysis

Now, to put all of these together, I ran the commands below to create a single file to analyze.
Note that the ” * ” indicates any match, so, it will match all of the temp sequence files in the
directory. This is just one more reason why you should be extra careful to be consistent in file
naming conventions.

Do NOT run this:

samtools mpileup -f transcriptome/gcatRef.transcripts.fa \
align/*.transcript.sorted.bam > tempData.mpileup

java -jar ~/opt/VarScan.v2.3.6.jar mpileup2snp \
tempData.mpileup -p-value 0.01 > tempVarScan_defaultOptions.txt

This created a file with all of the samples analyzed, and may be more interesting to analyze.

6.7. Where to go for help

My background is (definitely) not in population genetics, and my research has focused largely
on gene expression analysis. However, I have gotten good at reading programmatic documen-
tation, and in time you will too. So, when you start your project, start with the manuals and
documentation, and go from there. In addition, there are a lot of really helpful examples online,
including answers to other people that faced issues similar to what we are likely to encounter.

37

Variant Detection

6.8. Further Reading

More information related to these topics can be found in:
® http://varscan.sourceforge.net/using-varscan.html

® http://en.wikipedia.org/wiki/Nucleic_acid_notation#IUPAC_notation

38

http://varscan.sourceforge.net/using-varscan.html
http://en.wikipedia.org/wiki/Nucleic_acid_notation#IUPAC_notation

Chapter 7:
De Novo Assembly

7.1. Background

One of the most computationally difficult processes in RNA-seq is aligning all of the reads
together into transcripts. This can be eased by aligning them against a reference genome or
transcriptome, but sometimes references are not available. Only a small number of eukaryotes,
and even fewer animals, have had their genomes sequenced. This means that analyzing any
non-model system will often require assembling the sequences with just themselves (de novo).

This process is a major computational task, often requiring days or even weeks to run. Quite
simply: this is not something you want to run on your local machine. Even many online tools
don’t allow users to run assembly due to the computational cost.

There are a growing number of assembly programs, and each has unique benefits and draw-
backs. Below, we will just touch on some of the basics of these assemblers and set up a de novo
assembly to run with the cleaned reads that everyone has worked with. We will likely not cover
this section in the workshop, but it is here for your edification and benefit.

This module is going to focus on running a simple RNA assembly from the command line,
We will walk through each step in the process, leading to a single job with input from all of
the samples. The focus in these written instructions will be on running the program, rather than
on what the program is doing. For further information on what each assembler does, why you
might choose a particular assembler, and what parameters may need tweaking, please see the
documentation for these projects, and the links below (see section 7.6).

Figure 7.1: Drew Sheneman - The Newark Star Ledger; available online at
genomicglossaries.com/presentation/SLAgenomics.asp

7.2. Chapter goals
* Learn the basics of starting an RNA assembly
* Understand the basics of Linux command line scripting

¢ Understand the basics of what Trinity, or a similar short read assembler, does

7.3. Getting the data together

For this assembly, we will need to get all of the sequence data combined into a single (very
large) file. For that, we will use the cat (concatenate) command, and create a new file for each
the left and right reads. The code below will combine the listed files together. Replace the dots
and the last file with the remaining files to concatenate, and this will create a single file for all
of the reads. If you trimmed your sequence data, you should use the trimmed versions here.
Low quality sequence data is a much larger hindrance to assembly than it is to gene expression
analysis.

39

http://www.genomicglossaries.com/presentation/SLAgenomics.asp

De Novo Assembly

Do NOT run this:

cd /N/dc2/projects/GCAT/workshop/seqData
cat fileNameA fileNameB fileNameC > allSamples.fq

This command combines all of the named files together, and then writes them to a new
file. Be careful with the single “>” as it will overwrite a file of the same name. Using “>>”
will append the new information to an existing file, but can cause problems with accidentally
duplicating information in a file unless care is taken. That was a lot of typing, and introduces
several opportunities for error. The problem only gets worse with more files (these sample data
came from a set with 90 samples). Luckily there is a lazier more efficient and safer solution using
the wild card character (*):

Only one student should run this:
cd /N/dc2/projects/GCAT/workshop/seqData
cat *.fq > allSamples.fq

Which will match any of the files ending with “.fq” and put them together in a single script.

7.4. Set up the assembly script

Copy one of your old gsub scripts, then open it with nano (or, edit it on your machine,
and then scp it up). Set the required memory to 10 GB (vmem=10gb), and the time to 6 hours
(walltime=6:00:00). If you are doing this for your own data, you will want much larger memory
(e.g. 300gb) and time (e.g. 144 hours). Yes, assembly really can take that long; sometimes even
longer, especially if you have more sequence data. This is why you need dedicated computing
resources to run this, unless you have a desktop PC with 300 GB of RAM that you don’t need for
the next week.

Now, we need to add the programs that we will be running. Luckily for us, all of the pro-
grams we need (Trinity, samtools, java, and bowtie) are already available on many systems (in-
cluding Mason). A current list of software available can be found by running the command
“module avail”. To load these programs before running Trinity, add the following lines to your
script:

Put this in your new script file

module load java
module load samtools/1.2
module load trinityrnaseq

Note that you can also run this from the command line, if you want to use Trinity directly
from the command line; though the time limits mean you are unlikely to be able to accomplish
anything. If you want to load Trinity (or any other module) every time you log on to the computer
system, you can add the above line to the file “.modules” in your home directory.

Next, set the working directory for the script to the directory holding our sequence data.

Put this in your new script file
cd /N/dc2/projects/GCAT/workshop/seqData

We are now ready to add the call to Trinity itself to the script. There are many, many options
for Trinity, but we will stick with the simplest of them for this assembly. For more details on

options, look at the web documentation for Trinity linked below (section 7.6). Trinity is a Perl

40

De Novo Assembly

script, which means that it calls another programming language (which you don’t need to learn)
in order to execute the commands. The available options, and a usage example, can be found by
calling “Trinity --help | less” (note that this “pipes” the help through less to make it easier
to scroll). Below are some very basic approaches, which should give you the idea. Add this to
your script:

Put this in your new script file

Trinity.pl --seqType fq --max_memory 10G --CPU 1 \
--output GCAT_Trinity --single allSamples.fq

These commands call Trinity. It sets the “seqType” to fastq format. Allows the computer to use
up to 10 GB of RAM (also needs to be set at the top of the script, and should be changed for your
actual data) on one CPU. It will create a new directory named “GCAT_Trinity” for the output,
and will use the sequence file we created just above. This one line will run the full assembly for
us. Finally, as before, (though here only one student will submit the job) set the job to run with
gsub, and wait.

7.5. Where to go for help

Assembly is one of the largest challenges in bioinformatics right now. Fortunately, many new
approaches are emerging, based on both theoretical and practical exploration. Unfortunately, that
means that by the time you get around to looking for help, everything will have changed since I
wrote this. Using this module as a starting point will likely get you very far, as Trinity is one of
the better assemblers at the moment. If (read: when) you run into problems, ask around to see if
it is a common problem, and test out your Google-fu to see if others have already solved it.

7.6. Further Reading

More information related to this topic can be found at:

® trinityrnaseq.sourceforge.net/

41

trinityrnaseq.sourceforge.net/

De Novo Assembly

42

Chapter 8:
Simple in-class options

8.1. Background

The ways we have covered so far, focusing on R and the Linux command-line, are the most
robust way to do RN Aseq analysis, especially for research purposes. However, if you have a four-
hour lab available to cover “bioinformatics” for freshman, spending your time teaching them R
and Linux may not be fruitful. (Aside: If you have longer, and your goal it to train students to
actually do the analysis, it is almost certainly worth your time.) In these cases, you may wish
to opt for a simpler approach, with click-able menus, and fewer places for students to wander
off-track. In this chapter, I will present a (very) brief introduction to a few of these options. Each
lowers the bar to entry into bioinformatics, but generally at the cost of in-depth understanding,
flexibility, power, and/or expense.

Many of these tools also ease the entry to research questions as well. However, while they
will get you started, they are rarely enough to finish an analysis, and you will likely (eventually)
find yourself pulled back to R and the command line.

Figure 8.1: Staples easy button

8.2. Chapter goals
¢ Introduce simple alternatives
¢ Understand the utility and disadvantages of various trade-offs

¢ Explore ways to expose students to bioinformatics

8.3. Galaxy

Galaxy is one of several implementations of a “workflow system.” These systems generally
include a graphical user interface that makes it easier for those new to bioinformatic analyses
(such as students in a class) to begin making progress. The available programs are limited, and
default parameters are often set to ease the load on the computers. This makes completing tasks
easier, but leaves many decisions out of the investigator or students” hands. The instructions here

43

Simple in-class options

are specifically for Galaxy, but common sense and Google will allow you to use these as a guide
to enter other systems as well. Because I have more (though still limited) experience with Galaxy,
this section will be much more thorough than the others in this chapter.

8.3.1. Get access

There are many implementations of Galaxy that are run by various groups across the country
(GCAT-SEEK may be getting one). However, the process for signing up will be similar no matter
where you are joining. Google for “galaxy” and look for the Penn State implementation (the
url is usegalaxy.org, but Google and one-click will be faster than remembering that). You may
wish to bookmark this page to make it easier to get back to it. Click on “user” at the top, and
select “Register.” Follow the on-screen instructions to get an account. Make sure to remember or
save the password you select. Each time you want to sign on, go to the Galaxy main-page. Click
“User” at the top, and select “login”, and your saved sessions should be available to you.

8.3.2. Load data

There are several ways to load data into Galaxy. Here, we will focus on loading data directly
from your computer. However, it is also possible to load in data from other sites on the internet
(such as UCSC, BioMart, and several organism specific repositories). All of these methods start
with clicking “Get Data” at the top of the left-hand options from any page in Galaxy, then
selecting one of the options.

The simplest approach to get data into Galaxy is to load it through the browser. After se-
lecting “Get Data,” click “Upload File.” Leave the top set to “Auto-detect” to make sure it reads
your data appropriately. Browse for your file under “Choose File” and click “Execute.” The file
should upload and become available in your “History” panel on the right-hand side of the screen.
However, this will likely fail for large files.

There are two alternatives to upload larger files. First, you can load the files online somewhere
(e.g. Dropbox, Google Drive, etc.) where the file can be downloaded directly. Simply put the file
on your sharing site of choice, set the sharing settings to get a url, then paste the url into the box
labeled “URL” and click “Execute.” You can also upload the files using ftp. Connect to the ftp
server listed on the page (it may vary), sign in using your Galaxy credentials, and load the file.
Any ftp program will work for this. The file(s) will then be listed on the page — click the box next
to the files you want to load and click “Execute.”

8.3.3. Install programs

Do nothing. One of the benefits of using this kind of platform is that you (usually) don’t have
to install programs at all. Everything is already done for you. However, this also means that it
is very difficult to add programs, if what you want to use is not present. Further, each instance
of Galaxy has a slightly different suite of tools, so it may be worth looking at other options (e.g.,
Indiana University has a Galaxy instance with a few more tools than the main instance). To run
the program you are interested in, find it in the list on the left hand side of the screen, select it,
and follow the on-screen prompts.

8.3.4. Where to go for help

Galaxy is set up with a large number of options for help, including a wiki, video tutorials,
a "Support” page, and a lot of input from the community. Simply click "Help” at the top, and
select one of the options. Alternatively, Googling for “in Galaxy how do I ...” followed by your
problem is likely to bring up some great advice as well. When in doubt, reach out to someone
that may be able to help you, either directly or by suggesting good terms for your search.

44

https://usegalaxy.org/

Simple in-class options

8.4. iPlant

The iPlant collaborative was started in 2008 by the National Science Foundation to develop
cyber infrastructure for life science research. It is led by researchers at U. Arizona, the Texas Ad-
vanced Computing Center, Cold Spring Harbor Lab, and UNC Wilmington. iPlant offers a set of
platforms for next-gen sequence analysis, from graphical user interfaces to packaged command
line Linux options. Originally developed for use on plant genomics, the tools are not unique
by study system, and so this resource was opened to other species as well. The three tools de-
scribed below (DNA Subway, Discovery Environment, and Atmosphere) are linked by their use
of the “iRods Data Store,” a repository for uploaded data, which holds your own data along
with publicly available data. For the DNA Subway and Discovery Environment, the on-screen
prompts, and linked help, combined with your knowledge from this workshop, should get you
well started. For Atmosphere, your Linux knowledge will serve you quite well.

To get access to these tools, go to http://www.iplantcollaborative.org/, the main site de-
scribing the iPlant initiative. Select “User Portal”, then “Register” and follow the on-screen in-
structions. In the future, log-in through the same “User Portal” page.

8.4.1. DNA Subway

The simplest of the tools is the DNA Subway, and the “Green line” allows very basic RNAseq
analysis. This tool’s benefits are also its drawbacks. It is a simple, and very polished, point
and click tool through a basic analysis, particularly when using their sample data. This means
students don’t need to learn, or even be exposed to, R or the Linux command line. However,
this also means that there is little flexibility and little interaction, potentially limiting student
engagement, while ensuring they don’t wander off into the weeds. As of this writing (2014 June),
the Green Line is limited to four samples, and only works with eleven model species genomes.
This ensures consistent results, but means that your organism of interest may not be available
and that the data you are collecting this summer may exceed these limits. In short, this is a great
tool for an introduction to the steps of RN Aseq analysis, but is not designed for research.

8.4.2. Discovery Environment

The Discovery Environment, on the other hand, is much more similar to Galaxy. The user
interface is different, as is the set of tools available. However, many of the programs you may be
interested in using will be available, and you can use your own data (via the Data Store) following
simple on-screen prompts. Like Galaxy and the DNA Subway, this can ease the transition into
bioinformatics for students, though likely will not be able to take you all the way through to your
research goals. The major benefit over Galaxy is that, through its use of the data store, it is easier
to transfer the data to a more complete system, specifically Atmosphere.

8.4.3. Atmosphere

Atmosphere is, essentially, a cloud-based tool to access pre-built and custom Linux environ-
ments (instance) with various programs already installed. Launching an Atmosphere instance
will start up a Linux command line or graphical user environment with very good connection to
the Data Store, easing file saving/loading problems. The consistent environments made possible
by creating (or using) a specific instance, and the connection to the Data Store, will reduce some
of the early hurdles to student use. However, while using a created instance is simple, it can
be difficult to build one with exactly the tools you want for a class. The set up can be tricky to
get just right, and the limits on software space can be problematic if the program you want has
many dependencies. For long processes, a separate instance may be required for each step in the
analysis.

45

http://www.iplantcollaborative.org/

Simple in-class options

8.5. Accelerating Comparative Genomics

Accelerating Comparative Genomics (CoGe) is another online tool with a click-able user inter-
face. CoGe is geared towards genomic comparisons (hence the name), but has a few tools which
may also be useful for RNAseq analysis. CoGe also integrates with the Data Store, which may
make it an especially great tool if you are also interested in using pieces of the iPlant collabora-
tive. I encourage you to look through their help for general information, as well as to refer to the
modules written by Dr. Vincent Buonaccorsi for his GCAT-SEEK breakout session on Eukaryotic
Genomics: Comparative genomics, for more information on what is possible in CoGe.

There is, however only one tool for RNAseq, described in one of the CoGe youtube videos
here: youtu.be/3fNyHGB02dM. While the tutorial takes only a few minutes, please note that they
are using an incredibly small data file. In addition, there is no room for modifying parameters,
and the information it outputs (on gene models) may not be what you are interested in. As part of
the CoGe approach to comparative genomics, this tool is built for gene annotation, and as such,
has no support for differential expression. However, it may still be a nice tool to demonstrate
some of the basic concepts in short class time or extend your genetic analyses.

8.6. David Functional Annotation Tool

Functional group analysis (described more fully in Chapter 5), requires a fairly substantial
amount of preparation work. There are several online tools to ease running GO functional group
analysis, including within both iPlant and Galaxy. However, these tools still require many of the
same preparation steps, such as obtaining GO annotations. An alternative is to use a web-based
tool specifically designed for GO analysis, such as the David Functional Annotation Tool.

The David website (http://david.abcc.ncifcrf.gov), allows users to input gene IDs from
many model systems, and it then uses available annotations, without the user needing to find
them. Someone working with Arabidopsis can, for example, just submit a list of DE genes (based
on whatever threshold you are using). They then submit a background gene list, which is most
appropriately the genes known to be expressed in the sampled tissue (rather than the DAVID
default of all genes in the genome). David will then supply a list of significantly over-represented
GO terms and allow for some further analysis.

Several options exist to modify the David output. The user can, for example, select to only
analyze GO levels that are appropriate for the functions of interest. This is most often not the most
broad and basic levels. Biological or Molecular Process levels 3-7 are often the most informative.
In the DAVID tool, the P-value is adjusted using the Benjamini FDR correction by default, but
different corrections are available.

This tool still presents challenges to non-model species studies. Because the tool only has
access to model system GO annotations, it won’t be able to analyze a gene list from other species.
However, here, instead of having to run a full GO annotation (as described in Chapter 5), the user
would submit the gene identifiers of the best blast hit. David will then analyze those homolog
gene identifiers (e.g. Flybase or TAIR gene names) in place of the actual gene names from non-
model species. The standard caution remains however, that these annotations should be taken
with caution, as the function of a gene may have changed over the evolutionary distance between
your organism and the model-species reference.

David does a fantastic job of outputting basic GO analysis information that is well suited for
use in a brief class discussion, or when analyzing a model system for which the defaults work.
However, as with the other web-based tools we have encountered, there is slightly less flexibility
than when working in R or other systems. In addition, if you are generating gene lists in R
already, it may be easier to just call a variable name than to copy and paste the results into a new
tool and save them outside of R.

46

https://youtu.be/3fNyHGB02dM
http://david.abcc.ncifcrf.gov

Simple in-class options

8.7. Commercial Software

Up until now, all of the programs that I have described are free and open-source. This means
that they are free-as-in-beer (they cost nothing) and free-as-in-speech (you can see all of the code,
and do what you want with it). However, not all software falls into this category. There are a num-
ber of software packages available for a cost. These systems generally have very clean, attractive,
and intuitive graphical user interfaces (GUIs) that make working with them simple. In addition,
they generally package all of the tools you may want together; giving you a single installation,
rather than the multitude we have used here. If you have the money, and the inclination, such
software can make the entry into bioinformatics more pleasant.

These systems come with downsides, including lack of transparency, lack of community sup-
port, and cost. First, because the software is proprietary, you don’t know exactly what it is do-
ing with your data, which can make interpreting the outcomes very difficult, and makes trou-
bleshooting nearly impossible in some cases. Second, the proprietary nature means that there
is, generally, far less community support for the software. This limits the number of help posts
you are likely to find, and also means that new features aren’t emerging from the field. In con-
trast, new packages and software are constantly emerging to extend open-source software to
accomplish new things (such as the R packages we used here). Finally, these programs can be
very expensive. Licenses (which last a limited time) can run well into the thousands of dollars,
quickly reaching prohibitive levels for most labs.

That said, many of the users of these commercial programs swear by them. If you haven't
noticed yet from the size of my soap box, I am both too cheap and too devoted to open-source
to have much experience with these tools. However, below is an incomplete list of software that
you may be interested in pursuing.

e Avidis NGS
¢ CLC Genomics Workbench

DNASTAR QSeq

Partek Genomics Suite

OmicsOffice for NGS

NextGENe

8.8. Further Reading

For completeness, here is a list of open-source bioinformatics software:
http://en.wikipedia.org/wiki/List_of_open-source_bioinformatics_software and a gen-
eral list of RNAseq tools available, including both open-source and commercial options, sorted
by step: http://en.wikipedia.org/wiki/List_of_RNA-Seq_bioinformatics_tools

47

http://en.wikipedia.org/wiki/List_of_open-source_bioinformatics_software
http://en.wikipedia.org/wiki/List_of_RNA-Seq_bioinformatics_tools

Simple in-class options

48

Chapter 9:
Lab Work

9.1. Background

Most of the work for next-generation sequencing, especially RNA-seq, comes after all of the
sequencing is done and centers around four repeated letters in the computer. However, to get
to that point (where we have spent the rest of this manual), many laboratory steps must be
completed. These steps are not, generally, difficult, but they require a great deal of caution as the
finished product (RNA in this case) is often unstable and subject to contamination.

Here, we will walk through the basics of the laboratory steps required for RNA-seq: RNA-
extraction, rRNA removal (if necessary), library preparation, and sequencing. Often several of
the steps may be performed by a core facility for a fee. This fee is often a convenience fee, though
it reduces the need to develop substantial infrastructure for individual investigators, and reduces
the likelihood of errors caused by doing something for the first time.

This module will walk through the basics of the lab work necessary for RNA-seq analysis. It
will not, however, go into great detail about any of these steps. The simplest approach to each
of these steps is to buy a kit and follow those specific directions as exactly as possible. There
are a number of less expensive routes, that involve a series of chemicals rather than proprietary
kits. These are often much easier to scale for different volumes or applications, but require a bit
more up-front expenditure on infrastructure. For this year’s workshop, we are lucky enough to
be using a protocol, developed by Dr. Arthur Hunt, to make in-expensive librarires ourselves.
This protocol will be distributed separately.

WELL, UNTIL THE SECOND TRIMESTER,
THE RARY HAGN'T DECIDED WHICH
OPENING 1T Wil EXIT THROUGH.

WHAT?)

WELL HOPE FOR ONE OF
THE (OWERONES, SO IT
WONT RBE PIGHTING GRAVITY.

DID YOU KNOW YOU (AN JUsT 22 LAB COATS?

Figure 9.1: xkcd.com/699/ (Creative Commons Licencse)

49

http://xkcd.com/699

Lab Work

9.2. Chapter goals

* Learn how to extract RNA
¢ Learn how to prepare a sequencing library
¢ Make informed decisions about lab techniques and kits

¢ Understand the process that goes into lab work for RNA-seq

9.3. Sample collection

This process is entirely system, species, and question dependent. There are, however, a few
standard rules-of-thumb. First, be fast. Whatever technique you are using, you want it to affect
your tissue/cells as little as possible. Therefore, move quickly but not in haste. However, some
studies suggest that animal tissues can be processed several hours after death (Cheviron et al.,,
2011). Second, get things cold (fast). Dry ice, liquid nitrogen, or a -80 C freezer will stop much
of the RNA degradation, and can often be used as a preservative even without any sort of buffer
(depending on your system). Some alternatives rely on chemical preservation rather than cold
temperature. Finally, be consistent between samples. One of the biggest worries is accidentally (or
by design) treating samples from experimental groups differently, which could easily cause false
differences to be detected. With consistency, there is some leeway from the first two rules. Even
if there is some RNA loss, if it is consistent across groups, the stats should catch any problems.

9.4. RNA extraction

RNA extraction for RNA-seq is essentially identical to RNA extraction for other applications,
such as microarray processing. Everyone has a preferred method of extraction, generally a kit
designed for their species, and most of these methods appear to yield relatively similar results.
The basic concept is to rupture the cell, releasing RNA (and other cell contents, such as DNA
and protein) in a solution that will protect the RNA from degradation. Most kits are designed to
only collect RNA (the RNA sticks to a filter, and is later removed - “eluted”) after it is cleaned.
Some applications, such as phenol-chloroform extraction with TRIzol, are designed to allow
for the collection of genomic DNA, protein, and RNA all a the same time (if desired). This is
accomplished by separating the cellular contents into layers that can then be collected, rather than
relying on a single filter. A detailed protocol for this is available from me if you are interested.

9.5. rRNA removal

Ribosomal RNA (rRNA) makes up around 80% of cellular RNA, depending on species and
estimate. Unfortunately, this means that a large portion of RNA sequenced will be rRNA, which
makes it much more difficult to identify the coding sequences of interest. For eukaryotic samples,
rRNA removal can be skipped if the library preparation (see next section) uses poly-a isolation.
For prokaryotic samples, however, it is necessary to remove rRNA before library prep, unless
they are of specific interest to the project.

9.6. Library Preparation

The final step before sequencing is library preparation. RNA must be converted to cDNA and
ligated to adapters for sequencing. For most preparations, this will involve breaking the material
into smaller pieces and selecting a very specific size fraction. For paired-end sequencing, this

50

Lab Work

selection is what allows you to know how much space lies between the two sequence pairs — a
necessity for accurate assembly and analysis.

Library preparation can require a substantial investment in infrastructure (largely for break-
ing and size-selecting the RNA and having primers on hand) as well as attention to detail that
may be difficult to achieve for students or first - time investigators without substantial oversight.
Depending on your available time, infrastructure, guidance, expertise, and money, it is often sim-
pler (and more reliable) and occasionally less expensive, to pay for a core laboratory to perform
this step. This reduces errors and allows them to use their infrastructure (often including robots)
to reduce time and individual investigatory investment in equipment.

9.7. Where to go for help

The best source for help on lab work is the kit directions and manufacturers themselves.
In addition, many common questions have been asked and answered in online forums such as
seqanswers.com. A bit of searching may turn up an answer, or at least direct you to somebody
(or a forum) that may be able to answer your questions.

51

	1 Computer setup
	1.1 Background
	1.2 Chapter goals
	1.3 Sign on to a Linux computer system
	1.4 Linux tutorial
	1.5 Loading data
	1.6 Where to go for help
	1.7 Further Reading

	2 Sequence processing and quality control
	2.1 Background
	2.2 Chapter goals
	2.3 Checking data quality
	2.4 Setting up fastqc
	2.5 Running FastQC
	2.6 Trimming bad data
	2.7 Where to go for help
	2.8 Further Reading

	3 Read Mapping
	3.1 Background
	3.2 Chapter goals
	3.3 Choosing an aligner
	3.4 Installing RSEM
	3.5 Prepare for alignment
	3.6 Run the alignment
	3.7 Where to go for help
	3.8 Further Reading

	4 Differential Expression
	4.1 Background
	4.2 Chapter goals
	4.3 Prepare R
	4.4 Download data
	4.5 DESeq
	4.6 Interpreting differential expression analysis
	4.7 Where to go for help
	4.8 Further Reading

	5 Functional group analysis
	5.1 Background
	5.2 Chapter goals
	5.3 Basic statistics
	5.4 Getting GO annotations
	5.5 Run a GO analysis
	5.6 Where to go for help
	5.7 Further Reading

	6 Variant Detection
	6.1 Background
	6.2 Chapter goals
	6.3 Set up the software
	6.4 Prepare the alignment file
	6.5 Run VarScan
	6.6 Run a more complete analysis
	6.7 Where to go for help
	6.8 Further Reading

	7 De Novo Assembly
	7.1 Background
	7.2 Chapter goals
	7.3 Getting the data together
	7.4 Set up the assembly script
	7.5 Where to go for help
	7.6 Further Reading

	8 Simple in-class options
	8.1 Background
	8.2 Chapter goals
	8.3 Galaxy
	8.4 iPlant
	8.5 Accelerating Comparative Genomics
	8.6 David Functional Annotation Tool
	8.7 Commercial Software
	8.8 Further Reading

	9 Lab Work
	9.1 Background
	9.2 Chapter goals
	9.3 Sample collection
	9.4 RNA extraction
	9.5 rRNA removal
	9.6 Library Preparation
	9.7 Where to go for help

