
successfully accomplishing a variety of pressing
tasks. Given similar numbers of workers, envi-
ronmental conditions, and need, newly founded
colonies built comb faster, foraged more, and
stored greater amounts of food when their work
forces were comprised of many genetically dis-
tinct patrilines. Initial differences in labor pro-
ductivity amplified growth rates over time and
led to dramatic fitness gains for genetically di-
verse colonies (i.e., production of drones, colony
growth, and survival). Thus, we expect intense
selection favoring polyandry because intracolo-
nial genetic diversity improves the productivity
of the work force and increases colony fitness
during the risky process of colony founding.

Higher collective productivity of genetically
diverse colonies may be rooted in a broader or
more sensitive response from worker popula-
tions to changing conditions. The probability
that a worker will engage in a task has been
linked repeatedly to genotype [e.g. (5, 8, 19)].
Consequently, colonies with multiple patrilines
would be expected to have worker populations
that are able to respond to a broad range of task-
specific stimuli and, as a group, should be able
to provide appropriate, incremental responses to
changes in these stimuli (5). The observation
that intracolonial genetic diversity improved pro-
ductivity in colonies is consistent with predic-
tions made by models of division of labor that
rely on genotypic differences in response thresh-
olds among workers (20). Nevertheless, the ex-
tent to which genetically uniform colonies lagged
behind genetically diverse colonies in the early
stages of colony development was surprising,
considering that colonies initially lacked comb
and food reserves, and presumably, stimuli re-
flecting these needs could not have been greater.
Actual response thresholds of workers are not
well documented (20), and it is difficult to know
how they are related to the productivity of indi-
viduals and the colony as a whole. For example,
workers may vary genetically in the rate at which
they perform a task once their response threshold
is reached or they may not be “good” at tasks for
which they have high thresholds (i.e., they lack
physiological apparatuses or experience). Alter-
natively, thresholds may be so high for some
tasks that behaviors are effectively missing from
a worker’s repertoire, thus multiple patrilines
would contribute to the diversity of labor in a col-
ony, rather than division of labor among workers.

A key advantage of intracolonial genetic
diversity was revealed during infrequent periods
when food resources were plentiful (~33 days
during our study). Genetically diverse colonies
gained weight at rates that far exceeded those of
genetically uniform colonies (Fig. 3), whose slug-
gish foraging rates suggest that intracolonial
genetic diversity enhances the discovery and ex-
ploitation of food resources by work forces,
especially during periods when resources become
suddenly and abundantly available. Intracolo-
nial genetic diversity would result in more rapid
mobilization of forager work forces if, by

broadening the range of response thresholds in
colonies, it increased the probability of having
sufficient workers functioning as foragers and/or
broadened the range of conditions over which
foragers inspected, scouted, recruited to or were
recruited/reactivated to food resources. Selection
for polyandry would be strong if the genetic
diversity that it bestows on colonies enhances
the sophisticated mechanisms of honey bees for
recruiting nest mates to food. Because success-
ful colony founding by honey bees depends so
heavily on rallying foragers and the swift ac-
cumulation of resources, this could explain, in
concert with other benefits unrelated to worker
productivity (15, 21), the widespread occurrence
of extreme polyandry in all honey bee species.
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PDZ Domain Binding Selectivity Is
Optimized Across the Mouse Proteome
Michael A. Stiffler,1* Jiunn R. Chen,2* Viara P. Grantcharova,1† Ying Lei,1 Daniel Fuchs,1
John E. Allen,1 Lioudmila A. Zaslavskaia,1‡ Gavin MacBeath1§

PDZ domains have long been thought to cluster into discrete functional classes defined by their
peptide-binding preferences. We used protein microarrays and quantitative fluorescence polarization to
characterize the binding selectivity of 157 mouse PDZ domains with respect to 217 genome-encoded
peptides. We then trained a multidomain selectivity model to predict PDZ domain–peptide interactions
across the mouse proteome with an accuracy that exceeds many large-scale, experimental investigations
of protein-protein interactions. Contrary to the current paradigm, PDZ domains do not fall into discrete
classes; instead, they are evenly distributed throughout selectivity space, which suggests that they have
been optimized across the proteome to minimize cross-reactivity. We predict that focusing on families
of interaction domains, which facilitates the integration of experimentation and modeling, will play an
increasingly important role in future investigations of protein function.

Eukaryotic proteins are modular by nature,
comprising both interaction and catalytic
domains (1, 2). One of themost frequently

encountered interaction domains, the PDZ do-
main, mediates protein-protein interactions by
binding to theC termini of its target proteins (3–6).
Previous studies of peptide-binding selectivity
have placed PDZ domains into discrete function-
al categories: Class I domains recognize the
consensus sequence Ser/Thr-X-y-COOH, where
X is any amino acid and y is hydrophobic; class
II domains prefer y-X-y-COOH; and class III

domains prefer Asp/Glu-X-y-COOH (5, 7).
More recent information has suggested that these
designations are too restrictive and so additional
classes have been proposed (8, 9). The idea that
domains fall into discrete categories, however,
raises questions about functional overlap:
Domains within the same class are more likely
to cross-react with each other’s ligands. To
resolve this issue, we characterized and modeled
PDZ domain selectivity on a genome-wide scale.

We began by cloning, expressing, and purify-
ing most of the known PDZ domains encoded in
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the mouse genome (10–12) (table S1). Soluble
protein of the correct molecular weight was ob-
tained for 157 PDZ domains (fig. S1). Whereas
previous efforts to characterize the selectivity of
PDZ domains have relied on collections of pep-
tides with randomized sequences (7, 9, 13, 14),
our goal was to focus on genome-encoded se-
quences. We therefore synthesized and purified
fluorescently labeled peptides derived from the
10 C-terminal residues of mouse proteins. In
total, we synthesized 217 such peptides, which
we termed our “training set” (table S2) (15).
Although our training set is not guaranteed to
contain ligands for every PDZ domain, it per-
mitted us to obtain a broad view of binding
selectivity.

To investigate biophysical interactions be-
tween the 157 well-behaved PDZ domains and
each of the 217 fluorescent peptides, we devised
a strategy that combines the throughput of protein
microarrays and the fidelity of fluorescence po-
larization (FP) with predictive modeling (Fig.
1A).Microarrays of PDZ domains were prepared
within individual wells of microtiter plates and
probed, in triplicate, with a 1 mMsolution of each
peptide (Fig. 1B) (16). Interactions with a mean
fluorescence that was at least three times the
median fluorescence on the array were scored as
“array positives” (17). This process yielded 1301
putative interactions involving 127 PDZ do-
mains. Little can be concluded about the 30
domains for which no array positives were found.
For domains that bound at least one peptide,
however, the inability to bind other peptides
provides important information: These noninter-
actions were scored as “array negatives.”

As with any high-throughput method, there
are error rates associated with identifying both
positives and negatives. To eliminate array false
positives, we retested and quantified every array
positive with a solution-phase FP assay (Fig. 1C),
which served as our “gold standard” (17). By
measuring FP at 12 concentrations of PDZ do-
main, we determined the dissociation constant
(Kd) for each of the 1301 array positives (table
S3). Interactions that showed saturation binding
(18) with a Kd < 100 mM were considered
“positives”; those that did not were considered
“negatives.” On the basis of these criteria, 85
PDZ domains bound at least one peptide in
the training set. Although our Kd cutoff was
high, ~90% of the interactions had aKd < 50 mM,
and ~60% of interactions had a Kd < 20 mM (fig.
S2). In addition, FP assays revealed the false-

negative rate of the proteinmicroarray assay to be
6.6% (19).

To extract from our data the rules that govern
the peptide-binding selectivity of PDZ domains,
we built a model that predicts the PDZ domains
to which a peptide will bind, given its sequence.
Peptide recognition is often modeled with a
position-specific scoring matrix (PSSM), Q =

{qp,q}, where qp;q is defined as the probability of
observing amino acid q at position p in the subset
of peptides that bind to that domain (20). This
scoring approach is useful for predicting peptides
that bind to a single domain, but it is not ideally
suited to our purpose for two reasons. First, our
peptide sequences are derived from the genome
and thus are not random. Second, our goal is to
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Fig. 1. (A) Strategy for constructing a multidomain selectivity model for mouse PDZ domains. Protein
microarrays were used to test all possible interactions between 157 mouse PDZ domains and 217
genome-encoded peptides. Array positives were retested and quantified by FP, thereby correcting array
false positives. The resulting data were used to train a predictive model of PDZ domain selectivity. The
model highlighted putative array false negatives, which were tested by FP, and the corrected data were
used to retrain the model. After three cycles of prediction, testing, and retraining, the refined model was
used to predict PDZ domain–protein interactions across the mouse proteome. (B) Representative images
of protein microarrays, probed with fluorescently labeled peptides. PDZ domains were spotted in
quadruplicate in individual wells of 96-well microtiter plates. (Four wells were required to accommodate
all of the domains.) The red images (Cy5) show the location of the PDZ domain spots. The green images
show arrays probed with a promiscuous peptide derived from Kv1.4 (left) and a selective peptide derived
from ephrin B1/2 (right). (C) FP titration curves obtained for the array positives identified in (B).
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learn how one domain differs from another, (i.e.,
how selectivity is achieved). This information is
not captured in a traditional PSSM because
peptide residues that contribute strongly to
binding affinity, such as the C-terminal residue,
dominate the model, even if they are not impor-
tant in distinguishing one domain from another.

To construct a single model that includes
many PDZ domains, we developed a variation of
a PSSM in which a peptide is predicted to bind to
PDZ domain i if

ϕi ¼ ∑
p;q

Ap;qqi;p;q > ti ð1Þ

where ϕ is a binding score, A is an indicator of
peptide sequence, ðAp;q ¼ 1 if the amino acid at
position p of the peptide is q and Ap;q ¼ 0
otherwise), and ti is a scoring threshold, specific
to each domain. To ensure that our model focuses
on PDZ domain selectivity, we constrained
∑
i
qi ;p;q to be 0 for every position p and every

amino acid q. Thus, qi;p;q is positive if PDZ
domain i prefers amino acid q at position pmore
than the other PDZ domains, negative if it prefers
it less, and 0 if it has no bias relative to the other
domains. To tailor the threshold appropriately for
each domain, we defined ti to be the mth
percentile of ϕi’s for all of the peptides in our
training set that bound to PDZ domain i.
Empirically, we found that settingm = 5 provides
a good balance between false-positive predic-
tions and false-negative predictions. Because this
model is designed to highlight selectivity across
many members of a domain family, we refer to it
as a multidomain selectivity model (MDSM).

Our model takes into account the five C-
terminal residues of the peptide ligand: positions
–4, –3, –2, –1, and 0. Even with 217 data points
for each domain, there is insufficient information
to train such a high-dimensional model. To avoid
overfitting, we implemented a smoothing tech-
nique. If two PDZ domains bind a similar subset
of peptides, it is reasonable to expect that their
qp;q’s are also similar, unless the data suggest
otherwise. Likewise, if two amino acids have
similar physicochemical properties, it is reason-
able to expect that their qi;p’s will be similar.
Smoothing requires a quantitative measure of
pairwise distance. With PDZ domains, distance
was defined as the Hamming distance of their
binding vectors across the training-set peptides.
With amino acids, we relied on previously
reported “z scales” to capture their physico-
chemical properties, where z1 is considered a
descriptor of hydrophilicity, z2 is a descriptor of
molecular weight and surface area, and z3 is a
descriptor of polarity and charge (21). We
reduced the equivalent degrees of freedom in
our model by smoothing over PDZ domains and
over amino acids with a Gaussian kernel during
regression (22).

We were able to model 74 of the 85 PDZ
domains, which suggests that the majority of

PDZ domains (87%) conform to the assumption
that the contribution of each peptide position to
selective binding is additive. Having trained the
MDSM, we used it to predict false negatives in
our microarray data (Fig. 1A). Predicted array
false negatives were assayed experimentally by
quantitative FP, and the MDSM was retrained
using the updated information. This cycle of
prediction, experimentation, and retraining was
performed three times. In total, we tested 303
predicted array false negatives, of which 133
(44%) were found to be positives, yielding a
high-quality, quantitative interaction matrix for
mouse PDZ domains (Fig. 2A and table S3).
Overall, we found that the average binding affin-
ity of the array false negatives was slightly lower
than that of the array true positives. The distribu-
tions of binding affinities, however, overlapped
considerably (fig. S3).

The refined model performs well on the
updated data set, with a true-positive rate of
96% (it correctly identifies 515 of 536 FP-
confirmed positives) and a false-positive rate of
15% (it predicts an interaction for 186 of 1229
FP-confirmed negatives) when m is set to 5 (Fig.
2B). The parameters of the MDSM are depicted
as a heat map in Fig. 2C and are provided in table
S4. As anticipated, position 0 does not contribute
strongly to discriminative binding, but the four
other positions contribute substantially (Fig. 2C).

To extract biophysical modules out of the
resulting interaction network, we designed a
modified version of theMarkov cluster algorithm
(23), tailored to the special situation of a bipartite
network (22). The algorithm simulates a random
walk on the graph and is based on the observation
that random walks tend to be confined within
“tight clusters” of nodes. The algorithm identified
four tight clusters of PDZ domains and their
binding partners (Fig. 2D). For example, the
claudins (tight junction proteins) cluster with
ZO-1 and ZO-2, whereas theN-methyl-D-aspartic
acid (NMDA) receptor subunit isoforms
NMDAR2A and NMDAR2B, as well as several
voltage-gated potassium channels, cluster with
PSD-95, SAP-97, Magi-1, Magi-2, and Magi-3.

Encouraged by the close agreement of our
model with the training-set data, we used the
MDSM to predict to which proteins in the mouse
proteome each of the 74 PDZ domains are able to
bind. In total, we surveyed 31,302 peptide se-
quences corresponding to the C termini of all
translated open reading frames (24). We have
previously shown that our domain-based in vitro
strategy faithfully captures ~85% of the previous-
ly reported interactions involving PDZ domains
(17). We therefore provide these predictions
(18,149 PDZ domain–peptide interactions) as
supplemental information (table S5) to help
guide future biological investigations (25). We
note, however, that not all interactions that are
observed in vitro necessarily occur in vivo.

To further assess the accuracy of our model,
we selected a “test set” of 48 proteins from the
mouse proteome that were predicted to be highly

connected to PDZ domains (table S6). We synthe-
sized fluorescently labeled peptides corresponding
to their C termini and assayed them for binding to
the 74 PDZ domains in our MDSM with the use
of a single-point FP assay (26). These peptides
were not included in the training set and so offer a
stringent test of our model. In total, 493 new
interactions and 3059 noninteractions were iden-
tified. Our model predicted 48% (237) of the new
interactions and 88% (2680) of the noninterac-
tions when m was set to 5 (Fig. 2E), with a true-
positive/false-positive (TP/FP) ratio of 0.63
(237/379). The TP/FP ratio of our model pre-
dictions exceeds by a factor of more than 20 the
TP/FP ratio of a Bayesian model that integrates
information from two large-scale yeast two-
hybrid experiments and two large-scale in vivo
pull-down experiments in Saccharomyces cer-
evisiae, while maintaining the same true-positive
rate (27).We attribute the accuracy of ourMDSM
to its focus on a related family of domains, rather
than on a broad collection of proteins with dis-
parate properties. This argues strongly for a sys-
tematic but segmented effort to uncover protein-
protein interactions by focusing on families of
interaction modules.

We also observed a positive correlation be-
tween the model output (ϕi) and binding affinity
(fig. S5). We found that smoothing over both
PDZ domains and amino acids substantially con-
tributes to the accuracy of themodel, boosting the
TP/FP ratio by 44% over the model constructed
without smoothing, while maintaining the true-
positive rate essentially the same (Fig. 2E). Most
of the effect was derived from smoothing over
PDZ domains, but smoothing over amino acids
was also beneficial. To exclude the possibility
that the model performance was due to chance
correlation, we performed a Y-randomization test
(28) in which the interaction data were shuffled.
The resulting receiver operating characteristic
(ROC) curve was indistinguishable from the no-
discrimination line (fig. S6), indicating the
effectiveness of our training and test sets.

Having established that the model accurately
captures information about the binding selectivity
of PDZ domains, we asked which physicochem-
ical properties each domain uses at each position
to define its selectivity. For example, if we look at
the amino acid preferences of Dlgh3 (1/1) at
position –4, we find that the 20 q’s are positively
correlated with z1 but are not correlated with z2 or
z3 (Fig. 3A). In contrast, z2, but not z1 or z3,
correlates with discriminative binding at position
–4 forMagi-1 (4/6) (Fig. 3B), whereas z3, but not
z1 or z2, correlates with discriminative binding at
position –4 for MUPP1 (10/13) (Fig. 3C). These
three examples are extremes; in general, PDZ
domains rely on all three z scales for discrimina-
tive binding. To capture this information for all
PDZ domains at all positions, we constructed a
correlation matrix between the model parameters
and the first three z scales of amino acids (Fig.
3D). Because the contribution to discriminative
binding at position 0 is weak, we omitted this
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position from our analysis to avoid biasing our
results with artificially amplified effects.

To understand the organization of peptide-
binding selectivity on a global level, we deconvo-
luted the correlation matrix through singular-value
decomposition and found that the distribution of

PDZ domain binding preferences can be largely
explained by three principal axes. The space
defined by these axes can be thought of as “PDZ
domain selectivity space.” Each of the first two
axes explains ~30% of the variance in the
correlation matrix, whereas the third axis ex-

plains ~14% (Fig. 3E). The first axis (Fig. 3F)
can distinguish canonical class I PDZ domains,
which are preferred by peptides with a small,
hydrophilic residue at position –2, from canon-
ical class II domains, which are preferred by
peptides with a large, hydrophobic residue at posi-

Fig. 2. (A) Graphical view of the
training-set data. Kd’s of FP-confirmed
positives are represented by colors,
ranging from high affinity (red) to low
affinity (light blue). Array negatives
are shown in black, and FP-confirmed
negatives are shown in dark blue.
Numerical values are provided in table
S3. (B) Performance of the MDSM on
the training set, with m set to 5. True
positives are shown in red, false
positives in green, true negatives in
blue, and false negatives in yellow. (C)
Graphical representation of the MDSM
parameters, qi ,p ,q. Positive contribu-
tions to discriminative binding are
graded from black to yellow, and
negative contributions are graded
from black to light blue. Numerical
values are provided in table S4. Single-
letter abbreviations for the amino acid
residues are as follows: A, Ala; C, Cys;
D, Asp; E, Glu; F, Phe; G, Gly; H, His; I,
Ile; K, Lys; L, Leu; M, Met; N, Asn; P,
Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V,
Val; W, Trp; and Y, Tyr. (D) Tight
clusters embedded in the bipartite
interaction network between the 74
PDZ domains and the 217 training-set
peptides. (E) ROC curves for three
versions of the MDSM, obtained with
the test set of 48 peptides. The best
performance was obtained after
smoothing over both PDZ domains
and amino acids. The performance of
each version of the MDSM with m set
to 5 is indicated with an arrow.
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tion –2. Thus, the class I domains PSD-95 (1/3)
and Shank3 (1/1) lie at the negative end of the
first principal axis (Fig. 3G), whereas the class II
domains PDZ-RGS3 (1/1) and Grip1 (6/7) lie at
the positive end. Erbin (1/1), which has been
shown to bind both class I and class II peptides
(28–31), lies between the two extremes. The
second and third principal axes (Fig. 3F) add
further resolution. In particular, the third axis
distinguishes class III domains, such as neuronal
nitric oxide synthase (nNOS) (1/1) (preferred by
peptides with a negatively charged residue at
position –2), from the other PDZ domains. The
closer a PDZ domain lies to the positive end of

the third principal axis, the more it falls into the
class III designation.

There are, however, two important differ-
ences between the standard view of PDZ domain
selectivity and the view that emerges from our
broad investigation. First, positions –4, –3, –2,
and –1 all contribute substantially to the defini-
tion of our three principal axes (Fig. 3F). This
implies that selectivity is derived from interac-
tions throughout the binding pocket, whereas
peptide library screens have shown that affinity is
derived largely from the recognition of amino
acids at positions –2 and 0 (7). Second, and more
importantly, PDZ domains do not fall into

discrete classes but instead lie on a continuum.
Indeed, the canonical classes lie only in select
portions of this continuum (i.e., at the extremes of
the first and third principal axes). Moreover, the
PDZ domains represented in our model are
evenly distributed throughout selectivity space
(Fig. 3G). Zarrinpar et al. previously showed that
the 23 Src homology 3 domains in S. cerevisiae
are optimized to avoid cross-reactivity with the
mitogen-activated protein kinase signaling pro-
tein Pbs2 (32). Here, we find on a much broader
scale that a similar principle is in effect among
mouse PDZ domains and their ligands. Although
the selectivity of protein-protein interactions

Fig. 3. (A to C) Correlations between
z scales and model parameters at
position –4 for three PDZ domains.
(A) z1 positively correlates with q−4,q
for Dlgh3 (1/1). (B) z2 negatively cor-
relates with q−4,q for Magi-1 (4/6). (C)
z3 negatively correlates with q−4,q for
MUPP1 (10/13). (D) Correlation
matrix between the model parameters
for all 74 PDZ domains at positions –4,
–3, –2, and –1 and the first three z
scales of the amino acids. (E) Percent-
age of variance in the correlation
matrix that is explained by the 12
principal axes identified through
singular-value decomposition. (F)
Graphical representation of the first
three principal axes, used to define
PDZ domain selectivity space. (G)
Distribution of the 74 PDZ domains in
selectivity space. Selected PDZ domains
are shown, representing class I
domains [PSD-95 (1/3) and Shank3
(1/1)], class II domains [Grip1 (6/7) and
PDZ-RGS3 (1/1)], and class III domains
[nNOS (1/1)]. Erbin (1/1), which has
been described as a dual-specificity
domain, lies between the class I and
class II domains. (H) Correlation be-
tween pairwise sequence divergence of
PDZ domains and their pairwise
distances in selectivity space. Sequence
divergence was obtained from pairwise
alignments performed with Vector NTI
version 8 (InforMax, Invitrogen Life
Science Software, Frederick, Maryland),
using the blosum62mt2 matrix. Pair-
wise distances in selectivity space are
Euclidean distances obtained from the
three-dimensional plot in (G).
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could, in a multicellular organism, be controlled
at the level of gene coexpression and protein colo-
calization, our results indicate that the intrinsic
selectivity of PDZ domains is tuned across the
mouse proteome to minimize cross-reactivity.

Finally, we observed only a weak correlation
(correlation coefficient r = 0.23) between the
pairwise sequence divergence of PDZ domains
and their distances in selectivity space (Fig. 3H).
Similarity at the overall sequence level is thus a
poor predictor of PDZ domain function. This low
correlation suggests that most of the sequence
variation among PDZ domains is neutral with
respect to peptide-binding selectivity and that
only a subset of residues—presumably in the
binding pocket of the PDZ domain—is respon-
sible for the distribution of PDZ domains in
selectivity space.
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Brain IRS2 Signaling Coordinates
Life Span and Nutrient Homeostasis
Akiko Taguchi, Lynn M. Wartschow, Morris F. White*

Reduced insulin-like signaling extends the life span of Caenorhabditis elegans and Drosophila.
Here, we show that, in mice, less insulin receptor substrate–2 (Irs2) signaling throughout the body
or just in the brain extended life span up to 18%. At 22 months of age, brain-specific Irs2
knockout mice were overweight, hyperinsulinemic, and glucose intolerant; however, compared with
control mice, they were more active and displayed greater glucose oxidation, and during meals
they displayed stable superoxide dismutase–2 concentrations in the hypothalamus. Thus, less
Irs2 signaling in aging brains can promote healthy metabolism, attenuate meal-induced
oxidative stress, and extend the life span of overweight and insulin-resistant mice.

Reaching old age in good health is not
just good luck but the result of a
favorable balance between hundreds of

disease-causing and longevity-promoting genes;
regardless, some common mechanisms that in-
fluence life span have emerged (1). First, calorie
restriction reliably increases animal longevity,
and second, reduced insulin-like signaling
extends life span in Caenorhabditis elegans and

Drosophila melanogaster (2, 3). Calorie restric-
tion and reduced insulin-like signaling might be
linked because fasting reduces the intensity and
duration of insulin secretion required for glucose
homeostasis, and reduced insulin-like signaling
promotes the expression of antioxidant enzymes
that are associated with longevity (3–5). Adapting
these principles to humans is challenging because
calorie restriction is difficult and because reduced

insulin-like signaling can be associated with small
stature, metabolic disease, and diabetes.

Insulin and insulin-like growth factor-1
(IGF1) bind to receptors on the surface of all
cells that phosphorylate tyrosyl residues on the
insulin receptor substrates (IRSs)—chico in
Drosophila and Irs1, -2, -3, and -4 in mammals.
This signaling cascade activates the phosphoino-
sitide-3-kinase (Pik3C) and the thymoma viral
proto-oncogene Akt, which regulates many
cellular processes, including the inactivation of
forkhead box O1 (FoxO1) transcription factor
(6). Reduced chico expression decreases brain
and body growth while increasing life span up to
50%, which is related to the increased activity of
dFOXO in Drosophila (7, 8). In mice, the
deletion of Irs1 reduces body growth and causes
hyperinsulinemia, whereas the deletion of Irs2
(Irs2−/− mice) reduces brain growth and causes

Howard Hughes Medical Institute, Division of Endocrinol-
ogy, Children’s Hospital Boston, Harvard Medical School,
Boston, MA 02115, USA.

*To whom correspondence should be addressed. E-mail:
morris.white@childrens.harvard.edu
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ERRATUM

www.sciencemag.org SCIENCE ERRATUM POST DATE 19 OCTOBER 2007 1

CORRECTIONS &CLARIFICATIONS

Reports: “PDZ domain binding selectivity is optimized across the mouse proteome” by M. A.

Stiffler et al. (20 July 2007, pp. 364369). The position numbers appeared in the wrong order 

in Fig. 3F. The corrected panel is shown here.

Post date 19 October 2007
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LETTERS

Of Aging Mice and Men

LIU ET AL. (REPORT, “AUGMENTED WNT SIGNALING
in a mammalian model of accelerated aging,” 10

August, p. 803) have elegantly shown how alter-

ations in Wnt signals contribute to the suffering of

klotho-deficient mice, but not every sick little

rodent is a suitable model for human aging. The

pathological features and short life span of klotho

mutant mice have been shown to reflect hypervita-

minosis D, secondary to ablated responses to

Fgf-23 (1–3). The same syndrome appears in

Fgf-23 mutants and can be cured by deleting the

1-α-hydroxylase gene that increases the activity of

the vitamin. In both mutants, the features repre-

sented as evidence of “premature aging” can be

eliminated simply by putting the mice on a diet low in vitamin D. Perhaps vitamin D depriva-

tion will turn out to be the long-sought cure for aging, but in the meantime, it would be wise to

view with some skepticism the claims that klotho and similar developmental mishaps provide

convenient shortcuts for learning about mechanisms of “real” aging. RICHARD MILLER

Geriatrics Center and Department of Pathology, University of Michigan, Ann Arbor, MI 48109–2200, USA. 
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Response

THERE ARE MANYAREAS IN AGING RESEARCH IN
which there is some disagreement. One

question in dispute is the degree to which

observations in simple organisms, such as

postmitotic worms, can inform our under-

standing of mammalian aging. Similarly,

reasonable people disagree on the role, if

any, of cellular senescence in organismal

aging. We appreciate that there is also con-

siderable disagreement regarding how much

mammalian models of accelerated aging

can teach us about the normal aging process.

Our study centered on a set of observa-

tions suggesting that the Wnt family of pro-

teins could bind to klotho, a protein whose

absence has been linked to an accelerated

aging phenotype in mice. Genetic evidence

suggests that alleles of klotho are also asso-

ciated with variation in human longevity (1).

Nonetheless, we agree with Miller that con-

siderable care must be taken when using the

existing accelerated aging models as an

indication of the normal aging process. Our

opinion is that studying models of rapid

aging will be useful in teasing out the under-

lying mechanisms of how we age, although

we understand that Miller does not share

that opinion. Hopefully, we will all live long

enough to find out who is right.
HONGJUN LIU AND 

TOREN FINKEL

Cardiology Branch, National Heart, Lung, and Blood
Institute, NIH, Bethesda, MD 20892, USA. 
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Replicating Genome-Wide

Association Studies 

GENOME-WIDE ASSOCIATION STUDIES PROMISE
to significantly expand our knowledge of host

control of deadly pathogens. Lurking in the

background of these studies, however, is a seri-

ous methodologic issue. Individuals who par-

ticipate in the cohorts used in genome-wide

association studies are often ethnically and

racially different from their fellow citizens who

do not participate in these studies (1); more

important, they are markedly different from the

populations of developing countries with the

highest burdens of infectious diseases.

The Report “A whole-genome assoc-

iation study of major determinants for host

control of HIV-1” (J. Fellay et al., 17 August,

p. 944) demonstrates how much can be

learned from the study of a highly moti-

vated, largely European cohort. Unfor-

tunately, rather than suggesting that readers

strive to replicate the study findings in dif-

ferent populations, J. Fellay et al. instead

proceed directly to discussion of “directions

for therapeutic intervention” and “urgency

in carrying out similar studies for other

infectious diseases.” 

In rushing these issues, the authors over-

look several important points. Similar studies

conducted in different geographic regions

may fail to find the same associations, and

may even find different associations. The

highly polymorphic nature of human MHC,

different pathogen strains, or gene-environment

interactions could all result in variability of

associations across populations in different

regions. In some cases, such as the CCR5-

∆32 mutant allele, genetic associations spe-

cific to geographic region may indeed aid

drug or vaccine target discovery (2). How-

ever, a premature focus of financial and intel-

lectual resources on a few specific alleles may

throw out the baby for the bathwater. 
MARK H. KUNIHOLM

Department of Epidemiology, Johns Hopkins Bloomberg
School of Public Health, 615 North Wolfe Street, Baltimore,
MD 21205, USA.
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Response 

WE RECENTLY REPORTED THAT THREE POLY-
morphisms significantly influence host

response to HIV-1. Two of these polymor-

phisms associate with viral load during the

asymptomatic set point period, and the

third associates with a measure of HIV-1

disease progression.

Kuniholm raises the question of whether

the associations could be “replicated” in

other geographic regions and suggests that it

would have been preferable to evaluate this

rather than moving to practical applications

of the findings.

Our original study included samples

from multiple European populations, both

north and south; the effects observed can-

not be viewed as the result of a specific

cohort or geographic region within Europe.

In the original study, we also replicated all

three discoveries in a fully independent set

of samples.  

Kuniholm is correct that genetic effects

are sometimes observed in some population

groups and not others. The current consen-

sus view is that when a polymorphism is

present in different geographic regions, it

tends to have a similar effect, but causal vari-

ants do vary in frequency among different

groups (1, 2). Indeed, one of our associations

is known to be rare or absent in some geo-

graphic regions. Absence of a relevant

genetic variant in a particular population

does not in itself limit the applicability of

new knowledge: The example of the CCR5-

∆32 variant illustrates this point by demon-

strating that a medication of universal use

can indeed be developed on the basis of

genetic information from one human popu-

lation. The question of the geographic dis-

tribution of causal polymorphisms is an

important one, but it is separate from the

question of whether the polymorphisms

have important clinical effects in the

groups under study. Indeed, we are cur-

rently expanding our study to include mul-

tiple cohorts from the United States and

from Africa.
DAVID B. GOLDSTEIN

Center for Population Genomics and Pharmacogenetics,
Duke Institute for Genome Sciences and Policy, Duke
University, Durham, NC 27710, USA. 
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A Measure of Respect for

Translational Research 

IT WAS A PLEASANT SURPRISE TO SEE A SPECIAL
feature (“Careers in translational research,”

17 August, p. 966) in Science focusing on

translational research and its opportunities,

risks, and challenges. In their respective arti-

cles, S. Carpenter (p. 966) and K. Garber

(p. 968) highlight the concerns that transla-

tional researchers have about not being able

to satisfy traditional measures of scientific

success, including number of publications

and impact factors. This apprehension is

well founded. More worrisome is the sce-

nario in which the onus is placed on the

members of the translational community to

prove their worth. I think it is too much.

Measures of basic research productivity are

well established, but the same is not true

for translational research. I agree with Wu’s

advice (p. 967) to “go with what you pas-

sionately care about, because it’s a long row,

no matter how you hoe it,” but I also sym-

pathize with June’s lament (p. 969): “I

have seen several instances since I’ve been

at [Penn] where promising translational

researchers had to go back and just do basic

research in order to assure their promotion.”

It is time to think seriously about how to

develop criteria for quantitatively evaluating

www.sciencemag.org SCIENCE VOL 318 19 OCTOBER 2007 391
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translational work. “Bench-to-bedside” and

“lab-to-clinic” research will otherwise suffer

from a perennial problem of lack of recog-

nition. Considering the risk of failure in

translational research, we need to be open-

minded and adopt measures that focus not

only on success but on honest effort.

Achievements such as partnering, patents,

clinical trials, and drug screening should be

considered on par with publications for

assessment and promotion. Successes in

translational efforts should be provided with

“impact factors” commensurate with the vol-

ume of work, time taken, or importance in

terms of clinical or pharmacological utility.
ABHAY SHARMA

Institute of Genomics and Integrative Biology, Mall Road,
Delhi 110007, India. 
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LETTERS

CORRECTIONS AND CLARIFICATIONS

News Focus: “Accidents spur a closer look at risks at biodefense labs” by J. Kaiser (28 September, p. 1852). The highest bio-
containment level is “biosafety level 4,” not “biosecurity level 4,” as stated in the article. 

News of the Week: “Lapses in biosafety spark concern” by J. Couzin (14 September, p. 1487). A report by the Centers
for Disease Control and Prevention (CDC) incorrectly noted that its last inspection of Texas A&M University’s biosafety
program prior to July had been in February 2007. CDC has since noted that this was a typo. The inspection took place in
February 2006. 

Special Issue on Attosecond Spectroscopy: Reviews: “The future of attosecond spectroscopy” by P. H. Bucksbaum
(10 August, p. 766). In the second line of the legend to Fig. 1, the phrase “two cojoined coins” should read “two cojoined
cones.” 

Reports: “PDZ domain binding selectivity is optimized across the mouse pro-
teome” by M. A. Stiffler et al. (20 July, p. 364). The position numbers
appeared in the wrong order in Fig. 3F. The corrected panel is shown here.

Reports: “Genome plasticity a key factor in the success of polyploid wheat
under domestication” by J. Dubcovsky and J. Dvorak (29 June, p. 1862). In the
final reference, National Research Institute should have been National
Research Initiative.

Reports: “Thrice out of Africa: Ancient and recent expansions of the honey
bee, Apis mellifera” by C. W. Whitfield et al. (27 October 2006, p. 642).
Several critical references were left out of the final manuscript. In dis-
cussing the fact that “ample evidence shows that both European and
African alleles occur in Africanized populations” (p. 644), we should have
referenced two studies that first demonstrated introgression between invad-
ing Africanized and resident European honey bees in Texas: M. Pinto et al.,
Evolution 58, 1047 (2004) and M. Pinto et al., Genetics 170, 1653 (2005). In addition, these studies showed no differ-
ences between mitotypes of Africanized and European bees in the later years of Africanization. References to this con-
clusion should have been cited at the end of the first paragraph on p. 645. We greatly regret that these references were
omitted, and for this we extend our apologies to Pinto et al. The North American portion of this effort was built upon the
Pinto et al. work. It was only because we could make use of many of the same bees used in the Pinto et al. study that we
were able to corroborate the results of Pinto et al. and then expand on them, showing that the lack of correlation between
mtDNA and nuclear DNA involved markers distributed throughout the nuclear genome, and examining in more detail
the relationships between M-, C-, O-, and A-derived genomes.

TECHNICAL COMMENT ABSTRACTS

Comment on “Human Neuroblasts Migrate to the Olfactory Bulb via a Lateral
Ventricular Extension”

Nader Sanai, Mitchel S. Berger, Jose Manuel Garcia-Verdugo, Arturo Alvarez-Buylla  

Curtis et al. (Research Articles, 2 March 2007, p.1243) claimed discovery of a human neuronal migratory stream to the olfac-
tory bulb along a putative lateral ventricular extension. However, high levels of proliferation reported with proliferating cell
nuclear antigen were not confirmed using different markers, neuronal chain migration was not demonstrated, and no serial
reconstruction shows a true ventricular extension.

Full text at www.sciencemag.org/cgi/content/full/318/5849/393b

Response to Comment on “Human Neuroblasts Migrate to the Olfactory Bulb
via a Lateral Ventricular Extension”

Maurice A. Curtis, Monica Kam, Ulf Nannmark, Richard L. M. Faull, Peter S. Eriksson

In contrast to a previous study of Sanai et al., our study had the advantage of using serial sagittal sections of the human basal
forebrain, combined with 5-bromo-2’-deoxyuridine labeling, rigorous magnetic resonance imaging, and polymerase chain
reaction analysis. We believe these methods convincingly demonstrate the presence of a rostral migratory stream in the
human brain that resembles that in other mammals.

Full text at www.sciencemag.org/cgi/content/full/318/5849/393c
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