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SUMMARY

Natural genetic variation in the human genome is a
cause of individual differences in responses to med-
ications and is an underappreciated burden on
public health. Although 108 G-protein-coupled re-
ceptors (GPCRs) are the targets of 475 (�34%)
Food and Drug Administration (FDA)-approved
drugs and account for a global sales volume of
over 180 billion US dollars annually, the prevalence
of genetic variation among GPCRs targeted by
drugs is unknown. By analyzing data from 68,496
individuals, we find that GPCRs targeted by drugs
show genetic variation within functional regions
such as drug- and effector-binding sites in the
human population. We experimentally show that
certain variants of m-opioid and Cholecystokinin-A
receptors could lead to altered or adverse drug
response. By analyzing UK National Health Service
drug prescription and sales data, we suggest that
characterizing GPCR variants could increase pre-
scription precision, improving patients’ quality of
life, and relieve the economic and societal burden
due to variable drug responsiveness.
INTRODUCTION

A system of rigorous clinical trials and regulation exist to ensure

that a new drug is safe and effective when reaching the market.

However, natural human genetic variation(s) may cause individ-

uals to respond differently to the same medication. For instance,

genetic variation is linked to differences in response to anti-hy-

pertensive drugs such as b-blockers, angiotensin receptor

blockers, and angiotensin converting enzyme (ACE) inhibitors

(Johnson, 2008; Liggett et al., 2006; Mialet Perez et al., 2003).

Natural variation may also increase the propensity for adverse

reaction to drugs (Roden and George, 2002). Thus, genetic vari-

ation in drug targets may alter therapeutic efficacy and safety of

drugs. Inadequate accounting for adverse drug reactions cost a

fiscal burden of �30 billion US dollars annually in the US alone

(Sultana et al., 2013). Hence, understanding genetic variation in
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drug targets has direct bearing on tailoring drug prescriptions

(i.e., personalized healthcare) to maximize efficacy and safety

while reducing side effects.

Many druggable targets for treatment of common diseases

involve G-protein-coupled receptors (GPCRs) that mediate ther-

apeutic effects of �34% of the marketed drugs (Santos et al.,

2017; Rask-Andersen et al., 2014; Hauser et al., 2017). The sales

of GPCR targeting drugs represent a global market share of over

27% (The IDGKnowledgeManagement Center, 2016). Food and

Drug Administration (FDA)-approved drugs target at least 108

GPCRs (herein referred asGPCRdrug targets), with an additional

66 receptors targeted by agents that are/were in clinical trials (Ta-

ble S1). Some drugs act through several targets and frequently

include GPCRs. Thus, GPCRs serve as primary and secondary

targets and determine the pharmacological profiles of the re-

sponses (Allen and Roth, 2011; Hauser et al., 2017). Although

studies have identified polymorphisms inGPCRs that lead to var-

iable or adverse drug response (Table S2), the prevalence and

impact of genetic variation among all human GPCRs that are tar-

geted by FDA-approved drugs remain unknown. In this study, we

present a comprehensive analysis and map of the pharmacoge-

nomics landscape of GPCR drug targets (Figure 1).
Prevalence and Incidence of Natural Variation in GPCR
Drug Targets
What is the prevalence of GPCR drug targets to harbor a

missense variation (MV) within an individual? An investigation

of complete genotype information for 2,504 ‘‘healthy’’ individuals

from the 1000 Genomes Project (Auton et al., 2015) showed that,

on average, an individual harbors 68 missense variations within

the coding region of one-third of the GPCR drug targets (Fig-

ure 2A). Of these, an average of 8 variants per individual have

previously known clinical associations with altered drug

response (Figure 2B). For instance, the heterozygous A307T vari-

ation (minor allele frequency [MAF]: 0.49) in the follicle stimu-

lating hormone receptor (FSHR) is prevalent in women who

develop polycystic ovary syndrome and is associated with a

higher responsiveness to exogenous FSH (Dolfin et al., 2011).

The G9S variant (MAF: 0.48) in the dopamine receptor 3

(DRD3) is linked to increased risk of gastrointestinal toxicity

upon Levodopa treatment in subjects with Parkinson’s disease

(Rieck et al., 2016) (Figure 2C). Analysis of 1,762 trios (father,

mother, offspring) (Turner et al., 2017) revealed that 6 offsprings

harbor at least one new de novo MV in a GPCR drug target. In
MRC Laboratory of Molecular Biology. Published by Elsevier Inc. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:alexander.hauser@sund.ku.dk
mailto:madanm@mrc-lmb.cam.ac.uk
https://doi.org/10.1016/j.cell.2017.11.033
http://creativecommons.org/licenses/by/4.0/


prescription and
sales data

475

108 66

224

approved 
GPCR drug 
targets

trial GPCR
    targets

 non-
  targeted

GPCRs      

clinical annotations
drug-variant pair

in vitro 
mutations

Assessing the spectrum, prevalence and functional impact 
of genetic variation for alteration in drug response

functional sites

variant-disease
associations

GPCR Pharmacogenomics

genetic variation from ExAC (60,706 individuals)

genotypes from 1000 Genomes
Project (2,504 individuals)

missense variation
loss of function variation

de novo mutations (5,286 individuals)

ligand binding
G protein / Arrestin 
modification site
sodium pocket
microswitches

11/2011 - 05/2017

21%

79%

2016 £ sales volume

non-
GPCR
targets

GPCR
targets

GPCRcopy number variation + /

196 
receptor
ligand 
complexes

variant data functional effects

sales data
dr

ug
 a

nd
 G

PCR targets

mono-alleleic
expressionx

drugs

(£6.6 bn)

(£1.7 bn)

Figure 1. Pharmacogenomic Landscape of GPCR Drug Targets

Schematic highlighting the different types of data analyzed in this study, ranging from data on drug targets, variants, functional effects, sequences, structures to

information on prescription, and sales of drugs in the UK.
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other words, a new, non-lethal, missense, germline mutation in a

GPCRdrug target arises in 1 of every�300newborns (Figure 2D).

These observations collectively suggest that GPCR drug targets

are likely to show substantial variation with new missense muta-

tions continuing to arise within their coding region.

Mutational Landscape of GPCR Drug Targets
In addition to MV, mutations that introduce a stop codon, cause

a frameshift or affect essential splice sites constitute loss-of-

function variations (LoF). The abundance of a protein-coding

gene may be affected by deletions and/or duplications (copy

number variation [CNV]). Such mutational events may alter the

functional property and/or change the abundance of a drug

target, either of which can influence drug efficacy, safety profile,

and adverse reaction. How much variability is seen in the GPCR

drug targets in the human population? To characterize the spec-

trum and prevalence of variation in GPCRdrug targets, we inves-

tigated data from the exome aggregation consortium (ExAC),

which contains aggregated information on MVs, LoFs, and

CNVs for�60,000 ‘healthy’ individuals (Lek et al., 2016; Ruderfer

et al., 2016). This allowed us to characterize the mutational land-

scape of currently druggable GPCRs in the human population.

We find a total of 14,192 MVs in 108 GPCR drug targets,

with a mean of 128 rare (MAF <1 3 10�3) and 3.7 common

(MAF R 1 3 10�3) variants per receptor (Figure 3A and S1A).
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On average, 25% of all positions in each of the 108 GPCRs

contain a MV (Figure 3A). GPCR drug targets have, on average,

a LoF mutation in 9.3 different positions per receptor (Figure 3B).

Our conservative estimate suggests that on average, at least 120

of the 60,706 individuals harbor such LoF mutations (i.e., stop

codon, essential splice site, and frameshift mutation) in a

GPCR drug target (0.2%; STAR Methods). In fact, a minimum

of one LoF variant has been observed in each of the 108 GPCRs

suggesting that heterozygosity, regulatory epistasis, and buff-

ering mechanisms such as allele-specific expression might

offset the effects of these drastic mutations in healthy individuals

(Lappalainen et al., 2011; Kukurba et al., 2014).ManyGPCRdrug

targets are also susceptible to CNVs and each of the GPCRs

analyzed had on average two duplications and three deletions

reported in the ExAC dataset (Figure 3C).

The m-opioid receptor (MOR;OPRM1), targeted by analgesics,

is one of the highly variable GPCR drug targets in the human

population (Table S3; Figure S1B). Integrating the information

about the extent of variability of GPCR targets with the FDA-

approved drugs revealed that several of the highly polymorphic

GPCRs are targeted by a large number of drugs (Figures

S2A–S2C). Thus, the extensive genetic variation in GPCR drug

targets may contribute to a substantial, and as yet underappre-

ciated, variability in drug responses between individuals in the

population.
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Figure 2. Distributionof IndividualsHarboring

Missense Variation in GPCR Drug Targets

(A and B) Estimates based on genotype data from

2,504 individual genomes was made per individual

on (A) number of missense variants in GPCR drug

targets (left) and the number of GPCR drug targets

harboring a missense variation (right) and (B)

number of clinically known variants that alter effi-

cacy of drug response or toxicity in GPCR drug

targets (left) and the number of affected GPCR drug

targets with clinically known mutations (right).

(C) Allele frequencies of variants, known to alter

drug response in 2,504 individuals (number of

homozygous/heterozygous carriers) (Table S2).

(D) Analysis of 1,762 studied trios (father-mother-

offspring) revealed a total of 9 de novo missense

mutations in 6 GPCR drug targets.
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Putative Functional Impact of Variants in GPCR Drug
Targets
Can the observed variants of a receptor affect drug response

and what fraction of the variants is likely to have an impact?

We analyzed each of the MVs and investigated whether they

map to functionally relevant regions (i.e., ligand binding, effector

binding, allosteric sodium binding pocket, activation micro-

switches, and post-translational modification sites) to infer

possible impact (Figure 4A; Table S4). We identified functional

sites based on data from all 196 available GPCR-ligand crystal

structures; published literature and 2,544 experimentally vali-

dated post-translational modification sites (PTMs). 2,036 muta-

tions in the different receptors fall within known functional sites

(14.3% of 14,192 MVs; Z score = 3.7; p = 1.5 3 10�4; permuta-

tion test; Figure 4A; Table S4).

Examination of structures of GPCRs bound to FDA-approved

drugs revealed missense variation in the drug-binding pocket of

several receptors (Figure S3). For instance, 8 of the 9 positions in

the drug-binding pocket of maraviroc (antiretroviral drug) in the

CCR5 receptor exhibit polymorphism suggesting that patients

carrying such variant CCR5 receptors may show altered

response when treated for HIV infection. One in every 10 MV

resides in the G-protein- or b-arrestin-binding interface (Table

S4). For instance, of the 108 GPCR drug targets, we find that

for 67 receptors, there is at least one allele with a mutation in

the highly conserved 3.50350 position (GPCRdb numbering)

and for 41 receptors in the position 8.49349. These positions

make extensive non-covalent contacts with G-protein and

arrestin, respectively (Kang et al., 2015; Liang et al., 2017; Ras-

mussen et al., 2011; Zhang et al., 2017) and hence are important

for intracellular signaling and drug response. This suggests that

individuals with such receptor variants may exhibit differences in
G-protein selectivity or biased signaling

and thus respond differently to the same

drug due to differences in GPCR signaling.

Missense variants were also observed in

other functional sites that influence GPCR

structure, dynamics, activation, allostery,

and function. These include mutations in

the allosteric sodium-binding pocket that
modulate receptor activity (Katritch et al., 2014), micro-switches

that are critical for receptor conformational changes (Trzaskow-

ski et al., 2012; Venkatakrishnan et al., 2016; Wacker et al.,

2013), as well as post-translational modification sites such as

N-glycosylation in the N-terminal tail and phosphorylation in

the C-terminal tail that can influence receptor expression and

signaling, respectively (Venkatakrishnan et al., 2014) (Table S4;

Figure S4A). Individuals carrying such variant receptors may

respond differently to drugs because of altered basal activity

and signaling due to perturbation of residues important for

conformational changes. They may also show differences

because of altered expression, localization, trafficking, or desen-

sitization due to disruption of residues important for key post-

translational modifications (e.g., phosphorylation sites).

Analysis of the putative functional impact of these variants by

SIFT and PolyPhen revealed that 9,522 of the 14,192 MVs have

the potential to cause a functional impact due to changes in

the physicochemical properties of the variant (Figure 4B; herein

referred to putative functional sites). Of these, 1,772 MVs map to

the 2,036 known functional sites described above (i.e., �87% of

the known functional site variations have been captured by SIFT

or PolyPhen; permutation test;Z score = 24.5; p < 13 10�5). MVs

with putative functional impact map more often within the trans-

membrane region and loops compared to variants of unknown

functional impact (Wilcoxon rank-sum test for normalized

segment lengths; TM segments: p < 2.2 3 10�16; extracellular

(EC) loops: p < 2.8 3 10�7; intracellular (IC) loops:

p < 2.3 3 10�3; Figures S4B–S4D). It is likely that some of these

variations may influence receptor conformation, dynamics, and

signaling by affecting allosteric sites, effector selectivity sites,

receptor stability, and oligomerization (Congreve et al., 2017;

Costa-Neto et al., 2016; Flock et al., 2015, 2017; Gahbauer
Cell 172, 1–14, January 11, 2018 3
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Figure 3. Genetic Variation Landscape of GPCR Drug Targets
(A–C) Scatterplots of (A) missense variation (red), (B) loss-of-function mutations (blue), and (C) copy-number variation (purple) for GPCR drug targets. Each

mutation type shows the number of observed variants (separated into deletions and duplications for CNVs) for a given GPCR drug target. Missense variation

density was obtained by normalizing number of missense mutations to the receptor sequence length. Loss-of-function mutations are presented as the minimum

percentage of individuals harboring at least one copy of a protein-truncating variant (STAR Methods). Correlations and mean values (m) are shown for MVs and

LoFs. Mean values (m) for the distributions are provided. Genetic variation landscapes of GPCR drug targets that are in clinical trials are provided in Table S3 and

S4). Lower half of the figure shows the distribution of top 10 (upper panels) and bottom 10 ranking GPCR drug targets (lower panels).

See also Figures S1, S2, and S3.
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and Böckmann, 2016; Katritch et al., 2014; Venkatakrishnan

et al., 2013, 2016; Wacker et al., 2017).

Pharmacological and Clinical Effects of Receptor
Variants
Are the individuals with variant receptors likely to respond differ-

ently to drugs? To investigate this, we compiled experimental

data on ligand-mutant GPCR interactions. Consistent with the

findings above, of the 49 experimentally tested mutations corre-

sponding to naturally occurring variants in 24 receptors, 32%

(16 of 49) show at least a 5-fold change in affinity or potency to

one of the ligands tested. Of these, 68% (11 of 16) fall within
4 Cell 172, 1–14, January 11, 2018
known or putative functional sites (Table S4). These observations

suggest that naturally occurring variations in these drug targets

can affect drug binding.

We then analyzed data on drug-missense variant associations

frompopulation-based clinical studies and compiled a dataset of

statistical association between mutations in 16 different posi-

tions among 11 receptors and altered response to one of 39

approved drugs (Figure 4B; Table S2). These drugs cover treat-

ment of diverse disorders ranging from metabolic, respiratory,

nervous, and reproductive system disorders to cardiovascular

diseases. We categorized the diseases for which a drug is

administered and linked this information with the variant, and
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the position on the receptor. Of the 16 variants that have been

associated with an altered drug response, four variants reside

within putative functional sites and have modest to high allele

frequencies (MAF = 0.18 – 0.49; Figure 4B). The rest of the

MVs reside outside of functional sites, suggesting that such

mutations may be affecting yet-to-be characterized functional

sites. Such sites may facilitate interactions with other factors

such as chaperones, membrane proteins, cytosolic proteins,

and membrane lipids, form a part of oligomerization interface

or linear motifs within disordered regions, or may influence

receptor biogenesis and expression homeostasis (Chen et al.,

2014; van der Lee et al., 2014; Venkatakrishnan et al., 2014; Bou-

crot et al., 2015; Gupta et al., 2017).

Natural Receptor Variants Can Impact Drug Response
and Bias Signaling
In order to better understand the implications of the observed

variations, we experimentally investigated the impact of varia-

tions in two GPCR drug targets. We first analyzed the m-opioid

receptor, a highly variable GPCRdrug target with one of the high-

est numbers of FDA-approved drugs (Figure S2). Previously

uncharacterized polymorphisms around the ligand-binding site

were selected and tested using a real-time bioluminescence

resonance energy transfer (BRET) assay, which monitors state

transitions in G-protein subunits upon receptor stimulation.

Quantifying the onset kinetics of G-protein activation by GPCRs

(KON) in this assay approximates potency, while the maximal

response amplitude (RMax) reflects the efficacy (Masuho et al.,

2015a) (Figures 5A, 5B, S5A, and S5B). Our assay could reliably

discriminate differential effects of full agonist (morphine) from

that of partial agonist (buprenorphine) and antagonist (naloxone),

compared to the endogenous agonist endomorphine-1 for the

wild-type receptor (Figure 5C).

Three of the variants exhibited a range of functional alterations

in m-opioid receptor signaling (Figures 5D and 5E). One variant

(M153V3x36) resulted in partial loss of function, reducing its

responses to both full agonists and the partial agonist. The two

other variants uniquely altered m-opioid receptor pharmacology

by biasing drug action in a drug selective fashion. Specifically,

the K235N3x40 variant behaved like the wild-type receptor in

response to the endogenous ligand. However, K235N3x40 dis-

played increased efficacy and potency to buprenorphine relative

to the wild-type. KON estimates show that the potency of

responses to full agonist morphine also increased, but that of en-

domorphine-1 decreased with no change in their efficacies

(RMax). Such behavior is expected to produce little difference in

baseline phenotypes in individuals carrying this mutation but

would be expected to augment responsiveness to treatment
Figure 4. Missense Variations in GPCR Drug Targets and Their Possib

(A) Variants predicted to have impact by SIFT or PolyPhen (dark green). MVs can a

(left), post-translational-modification site (bottom), andmicro-switches including a

(right). The displayed structures showmissense variants within 5 Å (red) of an appr

PDB IDs are provided in the bottom of each structure sub-panel.

(B) Disease ontology (left), FDA-approved drug (middle), and variant (right) known

efficacy or lead to adverse drug response (Table S2). In some cases, the drug and

treat those diseases.

See also Figure S4.
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with synthetic opioids, increasing the risk of an inadvertent

overdose. Another variant V302I6x55 exhibited gain-of-function

effects with increased potencies to full agonists and efficacy of

the partial agonist. Importantly, both gain-of-function variants

maintained G-protein signaling when treated with an antagonist

naloxone, an activity not seen with wild-type human m-opioid re-

ceptor but previously reported for the mouse receptor (Masuho

et al., 2015a). These findings suggest that individuals with this

variant receptor may manifest loss of efficacy when treated

with naloxone, which is typically administered as a detoxifying

agent in patients with opioid overdose. Further adverse reactions

might arise in response to combinatorial medications, e.g., bu-

prenorphine/naloxone if prescribed for management of opioid

abuse (Boyer, 2012; Orman and Keating, 2009). Thus, receptor

variants can have specific effects on the response to some drugs

that may not be evident from their response to natural ligand.

We also examined changes in G-protein-binding specificity by

investigating the effect of polymorphisms at the G-protein-bind-

ing interface in the cholecystokinin A receptor (CCKAR). This re-

ceptor couples to several G proteins to manifest its physiological

effects (Dufresne et al., 2006) (Figures 5F, 5G, S5C, and S5D).

Wild-type CCKAR robustly coupled to all four Ga subfamilies

(RMax in Figure 5H; for order of preference, see kON in Figure 5H).

Notably, two polymorphisms in the G-protein-coupling interface

(R139I3x50 and R150W34x54) differentially altered coupling prefer-

ence (Figures 5I, 5J, S5C, and S5D). The R150W34x54 variant

showed increased signaling efficacy via Gao and Gaq, but

diminished signaling efficacy via Ga13 with no alteration in Gas

coupling. In contrast, this variant exhibited diminished potency

of Gao, Gaq, and Ga13 but not Gas activation. On the other

hand, the R139I3x50 variant showed equally diminished efficacy

across all four G proteins, yet potency was diminished only for

Gao, Gaq, and Ga13 but not for Gas. Thus, polymorphisms at

the G-protein-coupling site can change the balance of G-pro-

tein-coupling profiles to the same drug. For these experiments,

we used caerulein, a previously FDA-approved drug (agonist,

which closely mimics the endogenous peptide agonist), that

was retracted from the market. Nevertheless, it highlights that

the susceptibility to adverse reactions to drugs can differ de-

pending on the variant, and that this should be considered in

the drug development process (especially, agonists) against

receptors that can couple to multiple G-protein families.

The effect of a polymorphism on drug response is more com-

plex than what can be measured in overexpression, cell-based

studies, as one needs to consider the entire human physiology.

Although drugs (especially agonists) require only certain abun-

dance of the receptor to bring about their maximal response,

the expression of a variant allele can (1) result in gain-of-function
le Functional Impact

ffect different functional sites (light green), which were defined as ligand binding

llosteric sodium ion binding pocket and G-protein/arrestin interaction interface

oved drug (left and right) or MVs within 5 Å distance to the G protein or arrestin.

(i.e., statistical association in clinical-genetics studies) to alter drug response or

disease are linked to reflect the clinical study design and are not drugs given to



Figure 5. Effects of Natural Mutations on Drug Activity and G-Protein Coupling

(A) Positions of selected missense variations of the m-opioid receptor (MOR) near the ligand-binding pocket.

(B) Schema of the BRET assay for real-time monitoring of G-protein activation. Activating m-opioid receptors by agonist leads to the dissociation of inactive

heterotrimeric G proteins into active GTP-boundGa and Venus-Gbg subunits. The free Venus-Gbg then interacts with theGbg effector mimeticmasGRK3ct-Nluc

to increase the BRET signal.

(C) Ligand/drug-induced maximum BRET amplitude (RMax) and activation rate constants (kON) by wild-type m-opioid receptor (mean ± SEM, n = 6 wells).

(D) Real-time monitoring of ligand/drug actions on m-opioid receptor mutants (mean response trace, n = 3 or 6).

(E) Quantification of stimulus bias (RMAX, left and kON, right) of m-opioid receptor mutants. The values of agonist-induced responses were normalized to the

reference, wild-type m-opioid receptor (black line). The values of naloxone-induced responses were normalized to the K235N3.36x36 mutant (thickness represents

the SEM over n = 3).

(F) Positions of selected missense variations of the Cholecystokinin receptor type A.

(G) Schema of the BRET assay for real-time monitoring of G-protein activity for CCKAR experiments.

(H) Agonist-induced maximum BRET amplitude (RMax) and activation rate constants (kON) by wild-type CCKAR (mean ± SEM, n = 6 wells).

(I) Real-timemonitoring of G-protein activation byCCKARmutants stimulated with caerulein (30 mM, applied at 5 s, n = 3) normalized to themaximum amplitude of

the wild-type receptor.

(J) Quantification of G-protein-coupling bias (RMAX, left and kON, right) of CCKAR mutants normalized to wild-type CCKAR (black line, thickness represents the

SEM over n = 3).

See also Figure S5.
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effects to certain drugs, or (2) alter effector selectivity that will be

relevant even in a heterozygous condition with a wild-type allele.

In this context, analysis of allele-specific expression data in

humans revealed that a significant fraction of the GPCR drug

targets are expressed in a mono allelic manner (Figure S5E;

p < 1 3 10�5). This suggests that the overall abundance of the

wild-type (WT) and variant receptor may vary in different hetero-

zygous individuals harboring the same receptor variant. Thus,

the presence of a wild-type allele may not always buffer the

effects of a variant allele.
Taken together, these observations provide a map of poten-

tial pharmacological implications of natural variation in human

GPCRs. To facilitate studies on yet-to-be characterized

variants, we provide a comprehensive receptor tool and visu-

alization in a new section of the GPCR database (Figure S6;

http://www.gpcrdb.org/, ‘‘Genetic Variation’’ tab). This online,

interactive platform allows pharmacologists, molecular mod-

elers, clinicians, and anyone interested to select and study

the impact of natural variation for any drug target

(including those that are/were in clinical trials). This resource
Cell 172, 1–14, January 11, 2018 7
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is periodically updated to help realize the goals of personal-

ized medicine.

Drugs and Targets that Are Affected due to Functional
Site Variability
Which receptors have polymorphisms in a significant fraction of

their functional sites? For this, we analyzed the ExAC data and

identified receptors that show most and least variation in known

functional sites. On average, each receptor harbors at least one

polymorphism in 23% of the known functional sites (Table S5).

Among the highly variable GPCR drug targets are the somato-

statin SST5 receptor (SSTR5), cholecystokinin A receptor

(CCKAR), dopamine D5 receptor (DRD5), and the calcitonin

receptor (CALCR), all of which display amino acid alterations in

more than 40% of the known functional sites (Figure 6A). Thus,

for some receptors, the high incidence of variation (i.e., fraction

of known functional sites with a MV) makes drug effects more

likely, whereas the drug targets with less variability could be

expected to maintain the expected drug response. We then

developed a score for each drug to rank them based on how

likely they are to manifest altered response due to variability in

the fraction of known functional site in its drug target(s) (Table

S6). We find that ergoloid (for treating cardiovascular disease),

olanzapine, and asenapine (both for treating schizophrenia) are

drugs whose targets are most variable and thus are more likely

to manifest variable response (Table S6).

What fraction of the human population is likely to carry a

variant GPCR drug target with a mutation in a known or putative

functional site? We find that on average, 3.1% of the 2,504 indi-

viduals in the 1000 Genomes Project carry at least one allele with

a missense variation in a known functional site in any given

GPCR drug target (11.9% in known or putative functional site;

Table S5). For instance, over 86% and 69% of the individuals

carry at least one allele with a missense mutation in a known

functional site in the cannabinoid receptor 2 (CNR2) and

glucagon like peptide 1 (GLP1) receptor, respectively, that are

targeted by the common antiemetic nabilone, and several anti-

diabetic drugs such as exenatide. In line with what we observed

for m-opioid receptor variants, this suggests that a substantial

fraction of the population might carry variant receptors and

remain healthy but have the potential to display differences in

drug response when treated with a drug. Using the genotype

information of mutations in known and putative functional sites,

we ranked drugs whose targets aremost variable (i.e., fraction of

population) in their functional sites and thus are more likely to

manifest different response (Table S6).

The information and the framework that we describe here can

be used to prioritize drugs (Table S6) for pharmacovigilance in-

vestigations by regulatory bodies, post-market follow-up studies

such as in drug repurposing efforts, as well as in personalizing

prescriptions (e.g., dose, treatment regime, etc.). The informa-

tion on the spectrum and prevalence of receptor variation (Table

S5) can also be used for patient stratification of those entering

clinical trials in order to maximize success in clinical outcomes.

Possible Economic Impact of Drug Target Variability
Just in the UK alone, the National Health Service spent

�1.7 billion pounds in primary care for GPCR targeting drugs
8 Cell 172, 1–14, January 11, 2018
in 2016 (�21% of all drug cost). What is the economic burden

of drug cost associated with genetic variation in GPCR drug tar-

gets? For this, we investigated all the 279 FDA-approved drugs

that are prescribed actively in the UK, the number of prescribed

items for a 6-year duration as available in the National Health

Service health records (2011–17), and the cost associated with

prescriptions. Drugs that are highly prescribed bind to receptors

that are polymorphic within known and putative functional sites

in the human population (Figure 6B). We find the same trend

when considering LoF and CNVs (Figures S7A and S7B). For

example, the highly polymorphic drug target, m-opioid receptor,

mediates the effect of morphine, tramadol, codeine, buprenor-

phine, and fentanyl among other drugs (n = 22) that are

prescribed over 4million times eachmonth and account for sales

of more than 432 million British Pounds (GBP) per year just in the

UK. Even if a small fraction (7%, fromTable S5) of these prescrip-

tions are ineffective or lead to unexpected adverse reactions,

such a differencemay contribute to a differentially effective treat-

ment outcome and a significant economic burden (an estimate of

�30 million GBP per year in the UK alone).

To analyze each drug, their GPCR targets, polymorphisms

within drug targets, National Health Service prescription

and sales data, prescription statistics, affected individuals

considering known and putative functional sites aswell as homo-

zygosity/heterozygosity, and economic burden estimates, we

present an interactive resource at http://gpcrdb.org/mutational_

landscape/economicburden. In this simplistic estimate of eco-

nomic burden (STAR Methods), each prescription is treated as

being made for a separate individual due to patient anonymity

(i.e., we do not account for the recurrent prescription of the

same individual). Furthermore, information about the dose per

prescription, and how this has been altered based on patient

response is not considered. While we do not independently

weigh the variables in our equation, at the level of an individual,

the estimates can be higher or lower depending on the exact

response due to the polymorphism (i.e., known and putative

functional site, homozygosity, heterozygosity, neutral, loss- or

gain-of-function effects) and the patient’s alternative manage-

ment by the National Health Service.

Providing a broad estimate, in the UK, the possible economic

burden on the National Health Service due to ineffective pre-

scription of drugs targeting GPCRs could range between

14 million (considering % of individuals with both alleles having

a mutation only in known functional sites) and 501 million

(considering % of individuals with at least one allele having a

mutation in known or putative functional sites) GBP annually

(Figure 6C; Table S7; STAR Methods). These estimates do not

take into account other sources of economic burden such as

hospital prescriptions, nature of the illness (e.g., chronic v/s

short-term treatment for acute disease), age of patient (i.e.,

life-years of treatment), mutations outside of the coding region

that affect drug target expression level, associated additional

patient care and additional hospital costs in the case of adverse

drug reaction. The calculations suggest that polymorphisms in

GPCR drug targets may constitute a substantial, unaccounted

healthcare expense. Thus, investing efforts on understanding

and actively incorporating the effect of drug target polymor-

phisms and drug response in trials and the clinic has the

http://gpcrdb.org/mutational_landscape/economicburden
http://gpcrdb.org/mutational_landscape/economicburden
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Figure 6. Drugs, GPCR Functional Site Variability,

and Associated Economic Impact

(A) Number of FDA-approved drugs (y axis, log-scale) against

their missense mutation density within known functional sites

(x axis) for GPCR drug targets. Color represents the total

number of missense variants for each receptor within known

functional sites as seen in the ExAC dataset.

(B) Number of prescribed items by the National Health

Service each month (y axis, log-scale) against the maximum

number of missense variations in known and putative func-

tional sites of its therapeutic GPCR target for each FDA-

approved drug. UK sales volume is shown in million GBP per

month.

(C) Estimated economic burden on the National Health

Service per year due to ineffective drug prescription (STAR

Methods).

Please see Table S7 for each drug. See also Figures S6

and S7.
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Figure 7. GPCR Variants Can Contribute to Altered Drug Response

(A) Receptor response outcome upon binding to an endogenous ligand binding (E) and upon drug treatment (D). A receptor variant may induce phenotype-altering

(e.g., disease) perturbations (endogenous ligand) and/or altered drug response (and combinations thereof). The position of the missense variation (top right)

renders its effect. Some mutations may have no effect on the binding of the endogenous ligand or the drug and are entirely neutral. Mutations in/near the ligand-

binding interface might affect endogenous ligand signaling, drug response, or both. Mutations in the effector-binding interface (G protein/arrestin) most likely

affect both endogenous ligand signaling and drug response.

(B) Differences in drug response due to differentmutations between individuals in a population. The drug target variation spectrummay differently affect individual

drug responses by potentially altering ligand potencies and efficacies, receptor conformation, surface expression, and/or biasing signaling. Personalized target

sequencing could facilitate prognosis of a patient’s drug response. Additionally, pharmacological characterization of genetic variants that have been cataloged in

humans could foster precision prescription.

See also Figure S6.
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potential to curtail the recurrent, unaccounted expenditure on

public health.

Future studies should carefully collect more information and

consider various factors such as the exact effect of heterozy-

gous nature of a receptor polymorphism (i.e., loss of function,

gain of function, buffering), the dose and ways in which drugs

are prescribed (e.g., repeat prescriptions), efficacy is measured
10 Cell 172, 1–14, January 11, 2018
in clinical practice, and drug kinetics (that will vary in different in-

dividuals). These factors will be different depending on the drug,

receptor, individual, disease, country and medical practice, and

need to be considered for each receptor and drug independently

to obtain robust estimates of economic burden due to variable

drug response. We hope that the resource and analysis platform

that we present here and our estimates using a simplistic model
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will inspire new and novel lines of investigations addressing this

essential socio-economic and health problem.

DISCUSSION

Despite the importance of GPCRs as a major family of drug

targets, no receptor variants are included in the labeling informa-

tion of drugs (FDA, 2014; Thompson et al., 2014; Raimondi et al.,

2017). Althoughmost variants haveminor consequences and are

not described in the literature, even severe adverse effects are

estimated to only be reported in 1%–10% of cases (Giacomini

et al., 2007), possibly due to a lack of a single post-marketing

surveillance system for registering such effects. Additionally,

the effects that drugs produce are often confounded by drug-

drug interactions due to their combinatorial use, overlap with

disease symptoms, and general health status of the patient.

Disentangling the contribution of the variation with respect to

the disease condition or physiological differences and drug

treatment outcomes can help understand how and why certain

mutations are buffered under normal physiological conditions

in the healthy human population but could cause different re-

sponses to drugs (Figure 7A).

While significant efforts are under way for generating large-

scale information on genome variation, there is still a huge gap

between generating such data and understanding the impact

of genome variation (Gallion et al., 2017). Moreover, there are

limited experimental resources and efforts for mechanistic un-

derstanding of the effects of natural variation. As a first step,

detailed characterization of the various polymorphisms in a given

GPCRwith different doses of FDA-approved drugs from the rele-

vant cells and in native condition can provide insights into

predicting individual responses, leading to more precise pre-

scriptions (Figure 7B).

Genetic factors and polymorphisms outside of the coding

region can aggravate or alleviate drug response. For instance,

synonymous substitutions in exons and mutations within introns

can affect splicing patterns; mutations in the inter-genic region

can affect regulatory elements and influence the expression

levels of drug targets (Ward and Kellis, 2012), both of which

can affect drug response. Variation in downstream effectors

(e.g., G proteins, arrestin, GRKs) or enzymes that metabolizes

drugs (e.g., cytochrome P450) or those that regulate drug uptake

can contribute to altered drug reaction (Evans and McLeod,

2003). Other factors such as difference in drug absorption,

food effects, tissue distribution, clearance, drug administration

compliance, as well as heterogeneity in the disease etiology

can all contribute to variability in drug response (Sim and Ingel-

man-Sundberg, 2011; Lauschke et al., 2017). On the other end

of the spectrum, buffering mutations, epistatic interactions,

allele-specific expression, and the heterozygous nature of the

mutations within an individual might minimize the potential

effects of a polymorphism in a drug target under normal drug-

free conditions (Lappalainen et al., 2011; Kukurba et al., 2014;

Miosge et al., 2015). Thus, it is important to characterize all rele-

vantmutations in the human population, in the right experimental

setting, to delineate the direct effects of polymorphisms on drug

responses while addressing these issues on a receptor-by-re-

ceptor and drug-by-drug basis.
Until recently, drug prescriptions had not been guided by

pharmacogenomics, due to the cost and complexity needed to

identify, analyze, and interpret genetic variation data (Relling

and Evans, 2015). With the advent of sequencing technology

and increased international efforts such as the 1000 Genomes

Project, ExAC/gnomAD, Psychiatric Genomics Consortium,

among others, we are in a unique position with unprecedented

access to the vast information on polymorphisms in the healthy

and diseased individuals. Characterizing the effects of such var-

iants can be an important step in the design and interpretation of

clinical trial studies and could be translated into pre-clinical

testing to minimize adverse effects based on pharmacogenom-

ics considerations at a much earlier stage. This can supersede

the one-size-fits-all approach in drug treatment, help to prioritize

drugs for post-marketing follow-up studies and thus can serve

as an important step to personalized optimization of the dosing

for already-approved drugs.

In light of the guidelines provided by the FDA for labeling drugs

(US Food and Drug Administration, 2013), the findings presented

here underscore the importance of characterizing the drug target

variants for personalized medicine. Furthermore, access to com-

plete genotype data will be critical to assess the individual risk,

prevalence of variation, and their potential impact on adverse

drug response. Characterizing variants has the potential to also

shed light into receptor biology and help discover principles of

how different ligands (e.g., agonists, antagonists, etc.) mediate

signaling by binding at allosteric and orthosteric sites. Efforts

such as the Clinical Pharmacogenetics Implementation Con-

sortium, Ubiquitous Pharmacogenomics, Pharmacogenomics

Research Network, among others are already under way. Dedi-

cated, large-scaleefforts, similar to theENCODEproject, forphar-

macological characterization of the variants of drug targets would

be vital to accomplish this goal. The conceptual framework pre-

sented here canbe adapted to study other drugs anddrug targets

such as ion channels, kinases, and nuclear receptors. We hope

that the findings from our study and the resource that we present

will fuel and equip further advances in personalized medicine.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines and Tissue Culture
HEK293T/17 cells were grown in culture medium (Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum,

MEM non-essential amino acids (Life Technologies), 1 mM sodium pyruvate, and antibiotics (100 units/mL penicillin and 100 mg/mL

streptomycin) at 37�C in a humidified incubator containing 5% CO2. This cell line is derived from a female and was purchased

from ATCC.

METHOD DETAILS

Use of generic residue numbering systems to compare GPCR positions
In order to make the findings presented here applicable to all GPCRs, the GPCRdb numbering system (http://gpcrdb.org) was used

throughout this study (Isberg et al., 2015). The structure-based GPCRdb numbering scheme is an adaption of the sequence-based

Ballesteros-Weinstein scheme with corrections for helix bulges and constrictions. GPCRdb numbers are distinguished by a unique

separator x and may be used alone, e.g., 5x47, or together with one of the sequence-based schemes (such as Ballesteros-Wein-

stein), e.g., 5.46x47. Cross-class comparisons of generic residue positions (note, that e.g., 6x50 in Class A does not correspond

to 6x50 in Class B) were conducted according to a class residue translation table (Isberg et al., 2015). The offset to the Class A

x.50 to the corresponding Class B position can be deduced from following offsets: TM1-7: 4, 7, 4, 0,�4, 5, 4. Class A toC is translated

with the following offset for TM1-7: 4,�4, 4,�10, 0, 2,�5. Class A to F is translated by TM1-7:�3,�1, 0, 0, 4,�1, 0. For example, the

Class C 4x50 position corresponds to the 4x60 position in Class A receptors.

Datasets
FDA-approved drugs and their GPCR targets

All FDA-approved drugs and agents that are/were in clinical trials that target GPCRs were obtained from GPCRdb (Hauser et al.,

2017). In this list, every single FDA-approved drug-receptor interaction has a source reference article obtained via DrugBank (ver.

5.0.7) (Law et al., 2014) and literature search. The respective references (PubMed IDs) are available as annotation. Other annotations

include primary and secondary targets of approved drugs and additional targets that reached clinical trials. For the latter, information

about whether it is still in clinical trials (‘‘ongoing’’) or terminated is provided. Approved agents that are close analogs of the equivalent

endogenous ligands are noted. The list of drug-GPCR interactions is provided in Table S1. Please see www.gpcrdb.org/drugs/

drugbrowser (for all drug-receptor pairings) and www.gpcrdb.org/drugs/drugmapping (for a GPCR drug target overview). The data-

set from Hauser et al. (Hauser et al., 2017) contains 475 FDA-approved drugs that target 108 GPCRs. Additionally, it contains 532

agents in clinical trials (discontinued and ongoing) targeting a total of 165 receptors. Of these, 66 receptors do not have any FDA-

approved drug (i.e., not part of the 108 GPCR drug targets).

Genotype data

To estimate the number of coding loci with missense mutations (with respect to the reference human genome GRCh37/hg19) within

the GPCR drug targets in an individual, we obtained genotype data for 2,504 individuals from the 1000Genomes Project (Auton et al.,
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2015). Each of the genomes of the 2,504 individuals was separately investigated for missense variants in GPCR drug targets and their

clinical association with altered drug response in literature.

De novo mutations data

To estimate the de novomissense mutation rate within GPCR drug targets, we obtained de novomutations from 1,762 control trios

(without any reported pathological conditions) compiled from ten different studies from denovo-db (Turner et al., 2017).

Genetic variation data

We retrieved natural genetic variation data for all GPCRs from the Exome Aggregation Consortium (ExAC), which compiled exome-

sequencing data from various large-scale cohorts spanning 60,706 unrelated individuals from 6 distinct human populations. We ex-

tracted polymorphism data for the coding-region of the 108GPCRdrug targets andGPCRs that reached clinical trials (n = 66) via their

respective Ensembl transcript IDs as used in the GPCRdb (Table S5). Minor Allele frequencies (MAFs) were calculated as the ratio of

allele counts of the less frequent allele to the total number of alleles at that locus. Each variant wasmapped to its respective structural

segment (e.g., transmembrane regions, intra-cellular loops, extra-cellular loops, etc.), generic residue position (i.e., GPCRdb

numbering), receptor class, ligand-type and family classification according to the GuideToPharmacology (Southan et al., 2016)

and GPCRdb (Munk et al., 2016a) using custom R and python pandas scripts.

Densities (number of MVs normalized to the protein length) were calculated using the respective protein length. Missense variants

were categorised into ‘‘changed’’ and ‘‘similar’’ depending on whether the amino acid substitution switched defined categories such

as hydrophobic (‘A’, ‘C’, ‘F’, ‘I’, ‘L’, ‘M’, ‘V’, ‘W’, ‘Y’), aromatic (‘F’, ‘H’, ‘W’, ‘Y’), polar uncharged (‘S’, ‘T’,’N’, ‘Q’), helix breakers

(‘P’, ‘G’), negative (‘D’, ‘E’) and positive (‘H’, ‘K’, ‘R’) or remained within the same category. Loss of function (LoF) mutations was

extracted by filtering for essential splice sites, gained stop codon or frameshift mutations. As no genotype data were available, to

calculate the number of individuals with a LoF mutation, we estimated the minimum number of individuals with LoF mutations.

For this, we extracted positions within a GPCR drug target with the highest allele count for LoF mutations and corrected for homo-

zygous individuals (i.e., the number of homozygotes were subtracted from the total allele count to arrive at the number of heterozy-

gous individuals). This number (minimum population frequency) reflects the minimum number of heterozygous individuals, who carry

at least one LoF mutation in a GPCR drug target. Copy number variations (CNVs) were analyzed from 59,898 human exomes for all

GPCR drug targets (Ruderfer et al., 2016). For a total of 82 receptor genes out of the 108 GPCR drug targets, CNVs could be confi-

dently called. We calculated the z-score for each category (number of missense variants, missense variant density, number of loss of

functions, loss of function minimum population frequency, number of deletions and number of duplications) by

z� score=
x � m

s

where:
x is the observed value for the category considered.

m is the mean of the 108 GPCR drug targets in a given category.

s is the standard deviation of the 108 GPCR drug targets in a given category.

The absolute value of the z-score represents the distance between the individual observed value and the population mean in units

of standard deviation. We then used hierarchical clustering ‘heatmap.20 from ‘gplots’ in R to identify receptors that are highly poly-

morphic in multiple mutation categories (Figure S1B).

Estimation of putative functional impact of variants in GPCR drug targets
An analysis of the putative functional impact of variants was obtained using SIFT (Ng and Henikoff, 2003) (sorting intolerant from

tolerant) and PolyPhen (Adzhubei et al., 2013) (polymorphism phenotyping). A missense variant position was classified as a putative

functional site if SIFT (0-1; 0-0.05: deleterious, > 0.05: tolerated) or PolyPhen outcome (0-1; 0-0.1: benign, 0.1-0.2: possibly

damaging, > 0.2: probably damaging) predicted a deleterious or possibly damaging outcome. This resulted in the identification of

9,522 variants (referred to as putative functional sites).

Engineered in vitro mutations
Data on 28,779 experimentally characterized in vitromutations was retrieved from the GPCRdb (Pándy-Szekeres et al., 2017). From

this dataset, we extracted 9240 mutants for human receptor constructs and with reported effect values on ligand affinity/potency.

This includes experimental values for different ligands for a total of 1,996 distinct receptor positions. Additionally, all experimental

data obtained by investigating orthologous receptors from related species such as mouse, rat, hamster, dog, pig and rhesus ma-

caque were included if the corresponding generic structural-alignment position in the human receptor was identical in amino acid

(Isberg et al., 2015). The combined dataset comprised of 13,223 mutants in 68 distinct receptors and a total of 928 unique ligands.

We then looked for identical amino acid substitutions (same receptor, position, wild-type and mutant amino acid) that mimicked a

naturally occurring variant in the ExAC dataset for the 108 GPCR drug targets. In cases where there were multiple data points, we

consideredmaximum fold changes. (Table S4). A cut-off of 5-fold for themaximal absolute fold changeswas applied for experimental

in vitro support of impact on drug response (Munk et al., 2016b).
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Clinical annotations
Clinical information about missense variant-drug pairs with reported changes in efficacy, dosage or toxicity/ADR were manually

curated from the literature and PharmGKB, which aggregates the impact of human genetic variation on drug response (https://

www.pharmgkb.org/). We obtained the level of evidence for each association as listed in PharmGKB. If it was not available, we as-

signed the evidence level based on PharmGKB criteria (https://www.pharmgkb.org/page/clinAnnLevels), so as to guide the reader in

terms of the evidence that is available for a particular clinical association with a receptor variant. All figures and text referring to clinical

associations have been limited to a level of evidence of 3 or above (3, 2 and 1). In this annotation scheme, 4 is the lowest level of

evidence and 1 is the highest level of evidence. Disease annotations were extracted from the indications in the drugs@FDA database

(https://www.accessdata.fda.gov/scripts/cder/daf/) or the actual study that reported the altered drug response. Higher disease

ontology categories were assigned using the Experimental Factor Ontology (EFO) retrieved from the Open Targets database

(Koscielny et al., 2017). Corresponding positions and amino acid substitutions of reported SNP identifiers were retrieved using

BioMart for the ‘‘canonical transcripts’’ as stored in GPCRdb (Table S5) (Smedley et al., 2015). Network analysis between disease

categories, drugs and missense variants were done using Cytoscape 3.4.

Allele-specific expression data
We obtained information on allele-specific expression of genes from published literature (Savova et al., 2016). Briefly, genes were

classified as those with monoallelic and biallelic expression, by integrating gene-expression data and specific chromatin signatures

of gene expression (co-occurrence of silencing mark on Histone H3K27me3 and active mark H3K36me3 on the gene body) in six

different cell types. We assessed for enrichment of GPCR drug targets among genes with monoallelic expression using permutation

test.

Fraction of receptor length with a polymorphism or population with variant receptor
For each of theGPCRdrug targets we calculated: (i) the ratio of receptor length withmissense variation in a known functional sites per

GPCR drug target using the ExAC data (Table S5) and (ii) the fraction of affected individuals in the human population (n = 2,504; based

on the 1000 Genomes Project dataset, Table S5). The fraction of affected individuals was calculated using four different criteria by

considering individuals who have a variation in (i) known functional sites in both alleles (homozygous), (ii) known functional sites in at

least one allele (i.e., homozygous and heterozygous), (iii) known or putative functional sites in both alleles (homozygous), and (iv)

known or putative functional sites in at least one allele (i.e., homozygous and heterozygous). Known functional sites include ligand

binding, effector binding, post-translational modification site, sodium binding site and micro-switches. Putative functional sites

include those predicted to be deleterious based on SIFT or PolyPhen.

Drug scores for prioritization
We developed a score for each FDA-approved drug (n = 475) to rank them based on how likely they are to manifest altered response

due to the prevalence of known functional site variability of its target(s) in the human population.

The drug score (Table S6) based on the fraction of known functional site that are polymorphic in a drug target using the ExAC data

was calculated by:

variability score for a drug;Spolymorphic =X
fraction of known functional sites that are polymorphic for each receptor targeted by the drug

The drug score (Table S6) based on prevalence of affected individual (i.e., 1000 Genomes Project) was calculated by:

variability score for a drug;Saffected% = fraction of affected individuals with a MV in a functional site of the respective drug targetðsÞ
The fraction of affected individuals was calculated using four different criteria by considering individuals who have a variation in (i)

known functional sites in both alleles (homozygous), which is the most conservative, (ii) known functional sites in at least one allele

(i.e., homozygous and heterozygous), (iii) known or putative functional sites in both alleles (homozygous), and (iv) known or putative

functional sites in at least one allele (i.e., homozygous and heterozygous), which is the least conservative.

National Health Service prescription data
Every month, the National Health Service (NHS) in the UK publishes anonymised data about the drugs prescribed by general prac-

titioners. National Health Service data were retrieved from openprescribing.net (DataLab-EBM, 2017) (08/2017) for the list of drugs

targeting GPCRs and mapped back to their reported target of therapeutic action. From the 475 queried FDA-approved drugs, data

were available for 279 drugs targeting 92 distinct GPCRs (not all FDA-approved drugs are prescribed in the UK due to alternative

treatments). Items are the number of times the drug appeared on a prescription form that month (defined by National Health Service

Digital as ‘‘A prescription item is a single supply of a medicine, dressing or appliance written on a prescription form’’). The actual cost

is the estimated cost to the National Health Service, which is usually lower than Net Ingredient Cost (‘‘the basic price of a drug, i.e. the

price listed in the Drug Tariff or price lists’’). Openprescribing.net provides the actual cost by subtracting the average percentage

discount per item received by pharmacists based on the previous month from the Net Ingredient Cost, but adding in the value of
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a container allowance for each prescription item (DataLab-EBM, 2017). Total National Health Service spending was aggregated over

eachmonth of 2016 and comparedwith the total GPCR-targeting drugs to calculate the share for theGPCR targeting drugs (Figure 1).

Indications were grouped according to the British National Formulary (BNF), which is a reference book containing the standard list of

medicines prescribed in the UK and also includes information on indications, dosage and side effects.

Estimation of economic burden
The economic burden estimate was calculated using the following formula:

estimated economic burden per drug ð£Þ= average NHS cost per drug per year ð£Þ x
%individuals with a MV in a functional site of the respective drug targets
where:
d The average National Health Service cost is the average yearly cost over a 4-year period (2013-2016) per GPCR targeting drug

that is listed (n = 279). 2012 and 2017 have partial sales data and were not considered.

d %Individuals is the percentage of affected individuals with amissense variant in a functional site of the respective drug target(s)

(n = 2,504 individuals from 1000 Genomes Project genotype data as a representative for the UK population; this data includes

non-Caucasian populations as well) (Table S5).

d The % of affected individuals was calculated using four different criteria by considering individuals who have a variation in

(i) known functional sites in both alleles (homozygous), which is the most conservative, (ii) known functional sites in at least

one allele (i.e., homozygous and heterozygous), (iii) known or putative functional sites in both alleles (homozygous), and (iv)

known or putative functional sites in at least one allele (i.e., homozygous and heterozygous), which is the least conservative.

d Known functional sites include ligand binding, effector binding, post-translational modification site, sodium binding site and

micro-switches. Putative functional site include those predicted to be deleterious based on SIFT or PolyPhen (see above).

More specifically, for each drug we collected the respective targets and computed economic burden using the following four

criteria above: considering (i) % individuals with homozygous alleles in known functional sites, (ii) % individuals with at least one

variant allele in a known functional site, (iii) % individuals with homozygous alleles in known or putative functional sites and (iv)

% individuals with at least one variant allele in a known or putative functional sites.

For these estimates, we have incorporated the following considerations (below). The economic burden estimates will vary if one

scales/factors these variables differently:

1. We have considered that each prescription (National Health Service data) is made for a unique individual, due to patient an-

onymity. Furthermore, information about the dose per prescription, and how this has been altered based on patient response is

not explicitly modeled.

2. The effect of known and putative site polymorphisms as well as homozygous/heterozygous conditions are all treated the same

way. One could also obtain estimates by weighing these variables differently on a case-by-case basis for each receptor/drug.

3. The focus has been prescription only from GPs. There might be significant additions to the economic burden if one also con-

siders hospital prescriptions.

4. We used the data from 1000 Genomes Project as representative of the UK population, which may vary depending on the

receptor.

5. We have not explicitly modeled the age, gender, nature of illness (chronic v/s short-term) andmutations in non-coding regions,

which may affect expression level of drug targets.
Interaction interface, functional, and structural site assignment
Post-translational modification sites

We obtained publicly available experimental data on post-translational modification sites for the GPCR drug targets (including

Ubiquitylation, Phosphorylation, Palmitoylation, Hydroxylation, N/O-linked Glycosylation, Sulfation, Prenylation, ADP-ribosylation,

Methylation, Sumoylation, Acetylation, Disulfide bond and S-Nitrosylation) from dbPTM (Huang et al., 2016). Additionally, all post-

translational modification sites from PhosphoSitePlus (03/2017) from low-throughput experimental techniques, proteomic mass

spectrometry and shotgun proteomic experiments were collected and combined with the dbPTM dataset (Hornbeck et al., 2015)

(Table S4). Each post-translational modification site was cross-validated for identical amino acids in both dbPTMand its correspond-

ing GPCRdb wild-type amino acid. For each receptor, we then obtained the post-translational modification sites with reported

missense variation.

Generic transmembrane ligand-interacting sites

Ligand interaction sites were extracted from all 196 available receptor-ligand crystal structure complexes featuring 43 unique

GPCR ligand-receptor complexes from Chordate organisms and higher (excluding organisms such as Herpesvirus 5 and Todarodes
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pacificus). The union of ligand-interacting positions were aggregated for each of the 42 unique crystallized receptors including

aromatic, polar, and hydrophobic interactions within 4.5 Å of the co-crystallized ligand (Pándy-Szekeres et al., 2017; Munk et al.,

2016b). This led to a total set of 457 ligand-binding residues. Ligand binding site definition for receptors without structural information

have been inferred from the receptor family level (based on NC-IUPHAR receptor family nomenclature obtained from GPCRdb) for

which structural informationwas available (e.g., dopamine D5 receptor ligand-binding site is inherited fromdopamine D3 receptor). To

infer the ligand binding site from the crystallized receptor, we used only positions that have a generic numbering in the GPCRdb

numbering scheme (Isberg et al., 2015), which excludes ligand-interacting positions for most of the loops (three ECL2 positions,

including 34x52 at the top of the 7TM ligand cavity, are included). For ortholog receptors (e.g., mouse, rat, bovine), we inferred

generic positions only if the corresponding human residue is identical to the ortholog receptor. This allowed ligand-binding pocket

characterization for 24 families and a total of 139 receptors. We provide annotation as to whether a position is a known ligand-binding

site (LB) from a crystallized structure or an inferred one from a related structure of the same receptor family in Table S4.

Arrestin binding interface

All available GPCR-arrestin complexes (PDB: 4ZWJ, PDB: 4PXF, PDB: 5DGY, all are Class A rhodopsin structures) were retrieved

from the PDB and visualized using PyMol. The inter GPCR-arrestin residue contact network (RCN) for these structureswas computed

using Arpeggio (Jubb et al., 2017) with themaximum range of interaction set to 4.5 Å. The union of all interacting residue positionswas

taken and corresponding residues (with same GPCRdb numbers) were retrieved from the GPCRdb WebServices. This led to the

identification of 29 arrestin contacting positions that were used for the effector interaction site analysis. Arrestin residue positions

were applied to other classes by their corresponding generic position (see Use of common residue numbering systems to compare

GPCR positions).

G protein binding interface

The inter GPCR-G protein residue contact network was generated as described for arrestin. For the class A interface, the b2AR-Gs

(PDB: 3SN6), A2A-Gsmini (PDB: 5G53) and Rhodopsin-Gt-C-peptide (PDB: 3DQB, PDB: 3PQR, PDB: 4A4M) were used. This led to the

identification of a total of 33 G-protein interacting positions on the receptor. The class B GPCR-G protein interface was calculated

using the Calcitonin Receptor-Gs (PDB: 5UZ7) and the GLP-1-Gs (PDB: 5VAI) structures. For class C and class F receptors, the union

of both class A and B interface positions were considered as the G protein coupling positions.

Microswitches

Residues involved in mediating the conformational transition during activation (microswitches) were obtained from the literature

(Trzaskowski et al., 2012). These include: D/E3x49, K/Y7x43, R3x50, F5x47, Y5x58, E6x30, T6x34, W6x48, P6x50, N7x49, P7x50, Y7x53, I3x40.

Additionally, we considered the ‘‘P-I-F’’ motif (P5x50, I3x40 and F6x44) as an important motif for conformational rearrangements

upon receptor activation (Wacker et al., 2013). The positions 3x46, 6x37 and 7x53 were also considered as microswitches due to

their importance in structural rearrangements (Venkatakrishnan et al., 2016). Micro-switches were only considered for Class A

receptors.

Sodium ion pocket

Residue positions (n = 15) of the sodium pocket were extracted from Katritch et al. (Katritch et al., 2014) and comprised of N1x50,

V1x53, L2x46, A2x47, A2x49, D2x50, S3x39, L3x43, F6x44, W6x48, N7x45, S7x46, N7x49, P7x50, Y7x53. The Na+ pocket was only considered

for Class A receptors.

Structural site assignments

Segments of structural sites were extracted using class-specific multiple sequence alignments. Helix segments were assigned

based on a residue independent generic numbering position as described in the GPCRdb (e.g., 1x50 - > TM1). Residues falling be-

tween transmembrane regions were assigned to their respective loop region (extracellular and intracellular loops 1-3). Residues

before TM1 and after Helix 8 were assigned C-terminal and N-terminal, respectively.

Pharmacological validation
Selection criteria for in vitro variants

We performed functional analysis and pharmacological validation of mutations in two GPCRs for the ligand binding (OPRM) and

G protein binding (CCKAR). We selected the m-opioid receptor, due to its importance in analgesia, physical dependence and respi-

ratory depression. Additionally, m-opioid receptor is targeted by nearly 40 FDA-approved drugs and is one of the highly polymorphic

receptor. Specifically, a structural analysis identified 5 variants of potentially damaging or altering effects upon drug binding. These

include M153V3x36, K235M5.39x40, K235N5.39x40, V238I5.42x43 and V302I6x55. For the Cholecystokinin A receptor (CCKAR) we inves-

tigated the effect of polymorphisms at the G protein binding interface, which is known to couple to several G proteins to produce its

physiological effects (Dufresne et al., 2006). We selected 7 variants at positions, which are potentially important to interact with the

G protein, that were predicted to be deleterious in SIFT and PolyPhen and all mutations changed their residue properties (seeGenetic

variation data). These include R139I3x50, Q148E34x52, R150Q34x54, R150W34x54, E243K5x72, N304H6x26, V311E6x33. Experimental

outcome of all selected variants is provided in Figure S5.

Genetic constructs

Human wild-type and mutant receptors were synthesized and cloned into pcDNA3.1(+) by GenScript. pCMV5 plasmids encoding

Gao, Gaq, and Gas were gifts from Dr. Hiroshi Itoh (Nara Institute of Science and Technology, Japan). Plasmids encoding Venus

156-239-Gg1, and Venus 1-155-Gg2 were gifts from Dr. Nevin A. Lambert (Augusta University, USA) (Hollins et al., 2009).
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masGRK3ct-Nluc construct were generated as reported previously (Masuho et al., 2015a). PTX-S1 in mammalian expression vector

was kindly provided by Dr. Eitan Reuveny (Weizmann Institute of Science, Israel) (Raveh et al., 2010).

Transient transfection

We coated 6-cm culture dishes during incubation for 10min at 37�Cwith 2.5 mL of Matrigel solution (approximately 10 mg/mL growth

factor-reduced Matrigel (BD Biosciences) in culture medium). Cells were seeded into the 6-cm dishes containing Matrigel solution at

a density of 4 3 106 cells/dish. After 4 hr, expression constructs (total 10 mg/dish) were transfected into the cells using PLUS

(10 ml/dish) and Lipofectamine LTX (12 ml/dish) reagents. Venus 156-239-Gg1 (0.42 mg), Venus 1-155-Gg2 (0.42 mg), and

masGRK3ct-Nluc (0.42 mg) was transfected with different amount of Ga and receptor constructs. m-opioid receptor (2.52 mg),

cholecystoninin A receptor (2.52 mg), GaoA (0.42 mg), Gaq (0.84 mg), Gas (2.52 mg), or Ga13 (1.68 mg) was used. Empty vector

pcDNA3.1(+) was used to normalize the total amount of transfected plasmid DNA. PTX-S1 (0.42 mg) was transfected with Gaq,

Gas, and Ga13 to inhibit possible coupling to endogenous Ga belonging to Gi/o subfamily.

BRET assay for monitoring G protein activity

BRET experiments were performed as previously reported with slight modifications (Masuho et al., 2015a, 2015b). Sixteen to twenty-

four hours post-transfection, HEK293T/17 cells were washed once with BRET buffer (PBS containing 0.5 mM MgCl2 and 0.1%

glucose) and detached by pipetting with BRET buffer gently. Cells were harvested with centrifugation at 500 g for 5 min and resus-

pended in BRET buffer. Approximately 50,000 to 100,000 cells per well were distributed in 96-well flat-bottomed white microplates

(Greiner Bio-One). The Nluc substrate, furimazine, were purchased from Promega and used according to the manufacturer’s instruc-

tion. BRET measurements were performed using a microplate reader (POLARstar Omega or PHERAstar FSX, BMG Labtech) equip-

pedwith two emission photomultiplier tubes. All measurements were performed at room temperature. The BRET signal is determined

by calculating the ratio of the light emitted by Venus-Gb1g2 (535 nm with a 30-nm band path width) over the light emitted by

masGRK3ct-Nluc (475 nm with a 30-nm band path width). The average baseline value recorded before agonist stimulation was sub-

tracted from BRET signal values, and the resulting difference (DBRET ratio) was plotted as traces. The transiently transfected cells

were stimulated by endomorphin-1 (100 mM), morphine (100 mM), buprenorphine (10 mM), naloxone (100 mM) for m-opioid receptor or

caerulein (30 mM) for CCKAR at 5 s. No agonist-induced activation of G proteins was detected from the negative control that omitted

CCKAR. Each trace represents the mean of the responses measured in three or six wells. The maximal value recorded upon agonist

stimulation was reported as RMax. The activation rate constants (kON) were obtained by fitting a single exponential curve to the traces

with Clampfit ver. 10.3 software (Molecular Devices).

QUANTIFICATION AND STATISTICAL ANALYSIS

Pharmacological validation
Statistical analysis to analyze the experimental data was performed with GraphPad Prism 6. Statistical parameters are reported in

Figure Legends. All graphs pertaining to the experimental data were made with SigmaPlot 12.5.

ESTIMATION OF STATISTICAL SIGNIFICANCE

Enrichment of receptors with allele-specific expression
Enrichment of GPCRs among genes with monoallelic expression was assessed with permutation tests by performing 100,000

randomizations. In each randomization, each GPCR was replaced with a random gene and the number of such randomly obtained

genes that overlapped with genes with monoallelic expression was noted. From the random distribution, we computed the Z-score,

which captures the distance of the actual number of observations (e.g., GPCRs with monoallelic expression) to the mean of random

expectation in terms of the number of standard deviations. We estimated p value as the ratio of the number of simulations where the

random observations were greater than or equal to the number of actually observed values to the total number of randomizations

(100,000).

Enrichment of MVs in known functional site
To assess for enrichment of MVs affecting known functional sites, we obtained a list of random sites with similar number of sites with

MV for all GPCRs and then counted the number of random sites that overlapped with known functional sites. We performed 100,000

such randomizations to obtain a distribution of random expectations. Z-score and p values were estimated as described above.

Statistical significance for overlap between known and putative functional sites
For assessing whether the overlap between known and putative functional sites (deciphered from SIFT and PolyPhen predictions)

was significantly higher than expected by chance, we randomly replaced each known functional site with a random site with a

missense mutation in GPCRs and noted how many of these random mutant sites overlapped with the putative functional sites.

We performed 100,000 such randomizations and obtained a distribution of expected overlap by chance. Z-score and p values

were estimated as described above.
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Statistical significance for putative functional sites in different structural segments
We estimated statistical significance of differences in the distribution of putative functional sites and uncharacterized sites in different

structural segments of GPCRs using the non-parametric Wilcoxon rank sum test (Figures S4C; absolute counts and S4D; normalized

for segment length).

DATA AND SOFTWARE AVAILABILITY

Data and code availability
All relevant data are integrated into the web resource in GPCRdb (Pándy-Szekeres et al., 2017) (www.gpcrdb.org) and can also be

obtained from GitHub (https://github.com/protwis/gpcrdb_data). All data that support the findings of this study have been provided

as Tables S1, S2, S3, S4, S5, S6, and S7 as were deposited in Mendeley Data (https://doi.org/10.17632/pr5v9t8z36.1). The

open-source code can be obtained from GitHub (https://github.com/protwis/protwis). In-house written scripts can be obtained

from GitHub (https://github.com/AlexanderHauser/GPCR-Pharmacogenomics). For specific data/script requests please contact

the lead contact.

ADDITIONAL RESOURCES

Missense variation mapping of specific receptors
To analyze and characterize the extent of genetic variation, we incorporated all missense variations and functional annotations into

the framework of the GPCRdb (http://www.gpcrdb.org/) that allows researchers to map all missense variants for a selected receptor,

using NC-IUPHAR receptor nomenclature, onto a snake–like diagram and helix-boxplot of the selected receptor residue topologies.

Further, information regarding amino acid substitution, allele counts, allele frequencies, functional annotations, SIFT/PolyPhen

scores and heterozygosity for each individual position is provided (www.gpcrdb.org/mutational_landscape/). A statistic page is

presented for an overview of genetic variation in GPCR drug targets (www.gpcrdb.org/mutational_landscape/statistics). Possible

economic impact of drug target variability can be analyzed and estimated for individual drugs and different groups of drugs via

http://www.gpcrdb.org/mutational_landscape/economicburden. The National Health Service spending on each drug can be

obtained from the drug-receptor pairing page, which includes specific information of the drug such as indication, target family, target

category (primary/secondary), status, drug type, mechanism of action and references (www.gpcrdb.org/drugs/drugbrowser). The

natural variation dataset can be downloaded in full, accessed via an extensive API (http://gpcrdb.org/services/reference/), or

searched and browsed via a web interface.
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Figure S1. Frequency of Genetic Variants in GPCR Drug Targets, Related to Figure 3

(A) The allele frequency spectrum (ExAC data) of the 108 GPCR targets of approved drugs shows that most genetic variants are rare (single observations or allele

frequency% 0.01%). Common variants (> 0.01%) exist for 358 sites. The coloring showsmissense variations with an amino acid property change (‘changed’) and

missense variations, where the mutant amino acid substitution is within the same class of amino acid properties (‘similar’).

(B) To assess the most polymorphic GPCR drug targets (rows) across different categories including for MVs, LoFs and CNVs, Z-scores were calculated within

categories (columns) and grouped by hierarchical clustering. Receptors with high genetic variation are highlighted in red (Table S3).
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Figure S2. Loss-of-Function and Copy-Number Variations in GPCR Drug Target, Related to Figure 3

(A–C) Distribution of human GPCRs by the number of FDA approved drugs that target them (y axis, logarithmic scale) and (A) the number of missense variants

(x axis) along with the fraction of MVs by receptor length (red color scale), (B) the number of loss of function variants (x axis) along with a conservative estimate of

the minimum population frequency (blue color scale) and (C) the number of observed deletions (x axis) and duplications (purple color scale). GPCRs that are

frequently targeted by drugs (i.e., many FDA-approved drugs) are highly polymorphic in terms of MVs, LoF variants and CNVs.



Figure S3. All Available X-Ray Crystal Structures of GPCRs in Complex with FDA-Approved Drugs, Related to Figure 4

FDA approved drugs bound to their respective receptors (n = 15) are shown in green. Missense variations from 60,706 individuals within 5Å of the co-crystallized

drug are highlighted in red.



Figure S4. Missense Variants in Post-translational Modification Sites and Structural Segments, Related to Figure 4

(A) Missense variants were mapped onto experimentally verified post-translational modification sites of GPCR drug targets (n = 846). Number of missense

variants per post-translational modification site type.

(B) Structural segments were assigned for each receptor. Each segment was then aggregated into higher-order groups: C terminus, extracellular loops,

transmembrane region, intracellular loops, helix 8 and N terminus (top). Cartoon representation of the b2AR (PDB: 2RH1).

(C) Missense variants were projected onto each structural segment. Variants that are predicted to have a functional impact map (green) significantly more often

into the transmembrane region and loops (Wilcoxon rank sum test; EC-Loops: p < 8.0x10�7, IC-Loops: p < 1.6x10�3, TM: p < 2.2x10�16) variants of unknown

functional impact (gray).

(D) Missense variants were projected onto each structural segment and normalized by segment length. (Wilcoxon rank sum test; EC-Loops: p < 2.8x10�07, IC-

Loops: p < 2.3x10�7, TM: p < 2.2x10�16).
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Figure S5. Effects of Mutations on RMax and kON for m-Opioid Receptor and CCKAR and Allele-Specific Expression of GPCR Drug Targets,

Related to Figure 5

(A) Chemical structures of opioid receptor ligands.

(B) The bar graphs quantitate the relative RMax and kON of m-opioid receptor mutants to m-opioid receptor wild-type.

(C) Chemical structure of Cholecystokinin receptor ligand caerulein.

(D) The bar graphs quantitate the relative RMax and kON of CCKARmutants to CCKARwild-type. For both panels, results are expressed as the mean ± SEM. One-

way ANOVA with Dunnett post hoc multiple comparison test relative to ‘‘wild type receptor,’’ *p < 0.05, **p < 0.01, ***p < 0.001, n = 3 independent experiments.

(E) Enrichment of GPCR drug targets among genes with mono-allelic expression. The Venn diagram shows the overlap between GPCR drug targets and the

genes with allelic expression data. Enrichment was tested with permutation tests by performing 100,000 iterations. The random expectation (gray histogram) and

the actual observation (green arrow) of GPCRs with mono-allelic expression are shown on the right.



(legend on next page)



Figure S6. Resource and Tools for the Analysis of Variation Data of GPCR Drug Targets within GPCRdb, Related to Figure 6

Datasets for natural genetic variations comprising of 60,706 individuals have been integrated into the GPCRdb.

(A) Sortable variant table is provided for every receptor with more detailed information on the type and nature of each amino acid substitution, information about

allele counts and frequency, predicted functional impact scores (SIFT and PolyPhen) and functional site annotation.

(B) Genetic variation density (red intensity levels) on a GPCR classification tree (item ‘statistics’).

(C) Data points can be visualized for every selected non-olfactory GPCR (missense variants in red shown for adrb2_human) on a snake-like diagram (top) or a helix

plot (bottom) with additional information shown on mouse-over (allele count, allele frequency, amino acid change, number of homozygotes, predicted effects by

SIFT and PolyPhen).

(D) Missense variants can also be visualized on a consensus snake-like diagram for single families or ligand-types of GPCRs (gradient red for all Class A peptide

angiotensin receptors). Each position then gives the number of observed mutations and the list of observed amino acid changes.

(E) National Health Service spending data from 2011 to 2017 for 279 FDA-approved drugs. This is shown for Buprenorphine. The natural variation dataset can be

downloaded per receptor (www.gpcrdb.org/mutational_landscape/) or accessed programmatically via an extensive API.

http://www.gpcrdb.org/mutational_landscape/


Figure S7. Possible Economic Burden Due to Loss-of-Function and Copy-Number Variation Observed for GPCR Drug Targets, Related to

Figure 6

(A–C) For each FDA-approved drug, a pot of the number of prescribed items by the National Health Service each month (y axis, logarithmic scale in thousands)

against (B) the percentage of individuals with loss of function mutations and (C) maximum number of copy number variations in its therapeutic GPCR target is

shown. Sales volume is shown in million GBP per month.
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