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The nematode Caenorhabditis elegans is a popular model system in genetics, not least because a majority of human
disease genes are conserved in C. elegans. To generate a comprehensive inventory of its expressed proteome, we
performed extensive shotgun proteomics and identified more than half of all predicted C. elegans proteins. This
allowed us to confirm and extend genome annotations, characterize the role of operons in C. elegans, and
semiquantitatively infer abundance levels for thousands of proteins. Furthermore, for the first time to our knowledge,
we were able to compare two animal proteomes (C. elegans and Drosophila melanogaster). We found that the
abundances of orthologous proteins in metazoans correlate remarkably well, better than protein abundance versus
transcript abundance within each organism or transcript abundances across organisms; this suggests that changes in
transcript abundance may have been partially offset during evolution by opposing changes in protein abundance.
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Introduction

The rapid lifecycle, small size, reproducible development,
and ease of cultivation in the laboratory have made
Caenorhabditis elegans an important experimental system for
biological studies. Numerous human disease-related genes
(e.g., related to cancer or neurological diseases) have
orthologs in the worm [1]. Sequencing and annotation of its
genome has revealed more than 19,000 genes [2] coding for
more than 22,000 proteins, including splice variants. Exten-
sive systematic studies of gene function have been performed.
However, to completely understand complex biological
processes such as development, aging, or disease, the analysis
of the proteome—i.e., the entire set of the expressed
proteins—is becoming increasingly important. Knowledge
of the complete sequence of a genome is a necessary
prerequisite for proteomics, but the DNA sequence itself
does not reveal which proteins are actually expressed when,
where, and to what level. Furthermore, in contrast to the
genome, the proteome is changing under different biological
conditions. Although for many years, transcriptome data (i.e.,
the collection of transcribed mRNAs) has been used to
approximate the proteome, a number of studies have
demonstrated that the correlation between mRNA and
protein abundance is surprisingly low [3–5] because of
posttranscriptional regulation and variable protein half-lives.
The analysis of the proteome is therefore a key method to
provide systems-level information about protein function in
time and space, and to obtain a concise view of biological
processes. In the case of C. elegans, previous analyses of the
proteome were either limited in scope and coverage [6,7], or

largely focused on improving genome annotation [8], with the
biggest C. elegans proteome dataset published so far encom-
passing 6,779 proteins [8].
To generate a comprehensive, deeply sampled C. elegans

proteome database that can be used for quantitative
proteome analysis, we applied subcellular and biochemical
fractionation methods to the worm proteins, performed
tryptic digests, separated the resulting peptides using a
variety of techniques, and identified the peptides by mass
spectrometry (MS). This resulted in a unique global view on
the expression status of the C. elegans proteome. We identified
a number of protein features and functions that are under-
represented in the expressed proteome, likely representing
specialized functional systems expressed only in a small
subset of cells and/or developmental stages. We demonstrate
the importance of proteomics data towards improved
genome annotation. Finally, we compared the proteome data
with similar data from the fruit fly Drosophila melanogaster. The
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latter comparison provided—for the first time to our knowl-
edge—an overview of the expressed ‘‘core animal proteome,’’
which should arguably become the initial focus for monitor-
ing the basic metazoan cellular machinery in the future.

Results

Protein Identifications
To identify C. elegans proteins, we collected worms at

various developmental stages and homogenized whole ani-
mals and eggs to isolate the proteins. Their tryptic peptides
were separated using strong cation exchange chromatogra-
phy (SCX), in several cases after labeling them with isotope-
coded affinity tags (ICAT) [9] to reduce sample complexity, or
by isoelectric focusing (applying free-flow electrophoresis
and immobilized pH gradient strips). The peptides were
finally identified using microcapillary liquid chromatogra-
phy–electrospray ionization–tandem MS (lLC-ESI-MS/MS).
With this extensive shotgun proteomics approach, we
identified 10,977 different proteins, including splice variants,
via 84,962 nonredundant peptide identifications (Table S1;
759,320 peptide identifications were obtained in total). We
identified 10,631 gene loci, corresponding to 54% of the gene
loci in WormBase (WS140: 19,735 loci). Of these, 7,476 loci
(38%) were detected via several distinct peptides, 580 (3%)
were detected via the same peptide more than once, and
2,575 (13%) were detected only via a single peptide
identification (Figure 1). When considering individual anno-
tated exons (irrespective of their various splicing contexts),
our peptide data covered 28.2% of the 129,047 exons
contained in WormBase.

Protein identification from MS peptide spectra is prone to
false-positive assignments, and we employed strict search
cutoffs using PeptideProphet (see Materials and Methods). To
independently estimate our false discovery rate (FDR), in
particular for identifications based on a single peptide
spectrum (‘‘single hits’’), we first took advantage of one of
our experiments that used isoelectric focusing to fractionate
peptides. In each peptide fraction, true-positive identifica-
tions should scatter around a narrow range of isoelectric
points (pIs), whereas false-positive identifications should
follow the background distribution in the database. This
analysis, using computational predictions of pIs to check all

peptides, yielded an estimated FDR of 35% for single hits in
this particular experiment. Independently, a newly developed
model based on a robust decoy search strategy yielded an
upper limit for the FDR of single-hit identifications at around
63% for all combined experiments (L. Reiter, M. Claassen, S.
P. Schrimpf, J. M. Buhmann, M. O. Hengartner, et al.,
unpublished data). By the latter method, multi-hit identi-
fications were found to be much more reliable, resulting in an
FDR of 7% in our study. Since almost half of all single-hit
identifications do represent bona fide protein identifications,
we chose to include single-hit identifications in our sub-
sequent analyses. A separate analysis focusing on just these
proteins alone showed that they often belonged to groups
that were underrepresented in the complete dataset and are
therefore presumably of low abundance in C. elegans (short,
uncharacterized proteins and in particular those with seven

Figure 1. Workflow of the C. elegans Proteome Analysis

Proteins and peptides were isolated from whole worm or egg
homogenates, and separated biochemically. Peptides were identified
by lLC-ESI-MS/MS and database searches, and validated using the Trans-
Proteomic Pipeline [62]. We detected peptides for 10,631 different gene
loci, which corresponds to 54% of the predicted gene loci in WormBase
WS140 (19,735 gene loci). For 7,476 gene loci, more than one peptide
was identified; for 580 gene loci, a single peptide was identified
independently multiple times; for 2,575 gene loci, a single peptide was
identified; and 9,104 gene loci were not covered at all.
doi:10.1371/journal.pbio.1000048.g001
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Author Summary

Proteins are the active players that execute the genetic program of a
cell, and their levels and interactions are precisely controlled.
Routinely monitoring thousands of proteins is difficult, as they can
be present at vastly different abundances, come with various sizes,
shapes, and charge, and have a more complex alphabet of twenty
‘‘letters,’’ in contrast to the four letters of the genome itself. Here, we
used mass spectrometry to extensively characterize the proteins of a
popular model organism, the nematode Caenorhabditis elegans.
Together with previous data from the fruit fly Drosophila melanogast-
er, this allows us to compare the protein levels of two animals on a
global scale. Surprisingly, we find that individual protein abundance
is highly conserved between the two species. So, although worms
and flies look very different, they need similar amounts of each
conserved, orthologous protein. Because many C. elegans and D.
melanogaster proteins also have counterparts in humans, our results
suggest that similar rules may apply to our own proteins.



transmembrane domains; also see below). This means that
they do represent valuable information about which proteins
are expressed at low levels in C. elegans. It should also be
stressed that all conclusions reported below remained valid
when single-hit identifications were excluded.

To assess whether proteins from sources other than C.
elegans were present in our preparations, we focused on the
bacteria on which the worms were feeding (Escherichia coli).
We tested a single, representative experiment, encompassing
67 MS/MS analyses by searching the spectra against a
combined C. elegans and E. coli database. A total of 1.3% of
the protein identifications mapped to E. coli, among them 14
hits mapping to both organisms. However, for each of these
14 proteins, there was at least one additional C. elegans
peptide identified, confirming that these overlapping detec-
tions did not influence the C. elegans results.

Proteins Seen and Not Seen: Features and Functions
In order to characterize C. elegans proteins that were not

detected, and that are therefore most likely expressed at
particularly low levels, or in specialized cells or developmen-
tal stages only, we classified the entire predicted C. elegans
proteome with respect to several aspects (length, pI, hydro-
phobicity, transmembrane topology, and functional annota-
tion). This should reveal the nature of underrepresented
proteins (with potentially more peripheral, or even worm-
specific functions), and separate them from abundant
proteins involved in basic cellular processes such as growth,
metabolism, and information processing. It should also reveal
potential technical limitations (proteins/peptides difficult to
detect using our procedure), which is important to assess for
future systematic uses of MS.
Our bias analyses revealed an underrepresentation of

proteins shorter than 400 amino acids (Figure 2A) and of

Figure 2. Classification of Detected Proteins

(A–C) A bias analysis of the 10,977 identified proteins (including splice variants) in comparison to the 22,269 predicted proteins in WormBase (WS140)
was performed for the parameters (A) length, (B) isoelectric point (pI), and (C) hydrophobicity. Red lines indicate the percentages of identified proteins
in comparison to all C. elegans proteins in each bin. A value below 49% indicates fewer detections than expected; a value above 49% indicates more
detections than expected.
(D and E) Over- and underrepresentations of transmembrane (TM) proteins (D) and their functional classes (E) in our experimental dataset. Statistically
significant categories are labeled with asterisks: p-values better than 0.05 are indicated by a single asterisk (*); p-values better than 1E�4 are indicated
by double asterisks (**). The proportion of proteins with transmembrane helices was 36.5% in WormBase, and 30.5% in our proteome dataset.
(F) The global functional GO slim analysis for all proteins showed statistically significant over- or underrepresentations in the categories
‘‘biological process,’’ ‘‘cellular component,’’ and ‘‘molecular function.’’ We used abbreviated terms for three categories (GO:0006139, GO:0008152,
and GO:0005488).
doi:10.1371/journal.pbio.1000048.g002
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proteins with basic pIs (Figure 2B). A similar bias has
previously been observed for D. melanogaster [10]. The under-
representation of basic proteins was partly to be expected,
due to our isoelectric focusing experiments, which centered
on the pH range 3–7. The underrepresentation of short (low
molecular weight) proteins might be caused by a generally
higher prevalence of spurious gene predictions among short
genes, and also by a lower probability of detecting one of the
few tryptic peptides generated by short proteins. We
observed a bimodal distribution of hydrophobicity values
within the annotated set of all C. elegans proteins, and a strong
underrepresentation of proteins in the second, high hydro-
phobicity peak in our dataset (Figure 2C). This second peak
consists mostly of multipass transmembrane proteins (;64%
of these proteins have seven or more predicted transmem-
brane domains). To better understand how membrane
association relates to protein abundance and detectability,
we globally characterized WormBase proteins with respect to
their content of transmembrane segments, using Phobius
[11]. Overall, we found a notable underrepresentation of
transmembrane proteins in our proteomics data, and decided
to subdivide these proteins further according to the number
of transmembrane sections and annotated functions as shown
for other species [12,13] (Figure 2D and 2E). Remarkably, we
found that the strongest underrepresentation is observed for
proteins with seven transmembrane regions, in particular
those annotated with the function ‘‘receptor activity.’’ This
may point to a biological (rather than technical) explanation
for the relative paucity of transmembrane proteins in our
data: Seven-transmembrane chemosensory receptors are
widespread in the C. elegans genome, but many of these are
known to be expressed only in a small number of neurons
each [14–16]. Because we assessed whole animals, those
proteins might be too rare to be successfully detected. This

general underrepresentation in our proteome data suggests
similar sensory functions for other transmembrane proteins
of hitherto unknown function that we also found to be of too
low abundance to be detected.
Finally, we globally analyzed the functional classifications of

all the detected proteins. We observed a clear bias towards
proteinswithknown functions.The samebiaswas alsoobserved
for the D. melanogaster proteome [10]. A possible explanation
could be that some of the undetected proteins with unknown
functions are actually erroneous gene predictions or pseudo-
genes. It could also be a testament to the biases of previous
studies: abundant proteins are easier to work with biochemi-
cally, andmay therefore have obtained a functional annotation
more easily. In total, our proteomics approach identified
proteins belonging to 125 out of the 127 Gene Ontology (GO)
slim categories defined for WormBase. The global GO slim
analyses confirmed the underrepresentation of proteins with
receptor activity mentioned above, and of ‘‘membrane’’ or
‘‘integral to membrane’’ proteins in general (Figure 2F).

Improving Genome Annotation
Large-scale proteome analyses (such as ours) represent an

important cornerstone for an improved genome annotation.
In WormBase (WS160), 4,987 gene loci were still listed with
the gene status ‘‘predicted’’ only, i.e., without any supporting
transcript data (expressed sequence tag [EST], mRNA). We
experimentally confirmed the protein expression of 1,062 of
these predicted genes (among them, more than 40% via
multiple peptide detections). As was the case for the whole
proteome, this subset was enriched for proteins with GO slim
annotations (45% in our dataset, as compared to 38%
expected for this subset in WormBase; p-value: 4.65E�08).
Apart from these gene confirmations, our C. elegans proteo-
mics dataset contains numerous spectra originating from

Figure 3. Improved Genome Annotation via Novel Peptide Identifications

Examples of novel peptides obtained from genomic searches against a six-frame translation of the C. elegans genome, and the region where they match
to the genome.
(A) The novel peptide sequence LFEMHQISGINAASPEK suggests an alternative translational start site for the protein SYN-4 (T01B11.3). The sequence
predicted to code for this peptide extends upstream of the annotated translational start site. An alternative start codon can be found further upstream
in the same reading frame.
(B) A peptide points at a novel splice variant that was identified for the gene F47B7.7. The peptide WGDAGYVSHSPSPTGEIHEEYQYTR extends an existing
annotated exon into the downstream intron, resulting either in the selection of an alternative 59 splice site downstream of the peptide, or in intron
retention, which would result in an early translation stop (shown).
doi:10.1371/journal.pbio.1000048.g003
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nonannotated regions in the worm genome. In computation-
ally intensive analyses, we are identifying these by searching
our data against six-frame translations of the genome, and
filtering the results for high confidence spectra that map to
nonannotated regions. For example, from one particular
experiment, we identified 78 likely novel peptides. Two of
these are illustrated in Figure 3 (the corresponding MS/MS
spectra are provided as Figure S1). These data suggest an
alternative translational start site for the protein SYN-4
(T01B11.3; Figure 3A): the observed peptide is located
upstream of the annotated translational start site, and only
partially overlaps with the currently annotated protein
sequence. The second example demonstrates a novel splice
variant for the gene F47B7.7 (Figure 3B). In this case, we
identified a peptide that extends an existing annotated exon
downstream, in the correct frame. These and similar analyses,
suggesting altered or new gene models, are computationally
very intensive and were not yet completed at the time of
submission. Furthermore, due to the increased search space
when searching proteomics against the genome, extra scrutiny
is needed when interpreting each reannotation instance, and
additional experimental data should probably be taken into
account before fully accepting these gene annotation changes.

Operons
C. elegans and its relatives are unique among characterized

metazoans in that a large number of their genes are organized
into operons (multicistronic transcription units, containing
up to eight genes that are strictly coexpressed [17,18]).
Following transcription, the primary transcript is split up
through a unique trans-splicing mechanism, and the individ-
ual open reading frames are subsequently translated sepa-
rately into distinct mature proteins. In order to assess the
potential influence of operon structure on the regulation and
abundance of proteins, we studied the expression status of
genes in operons, compared to individually transcribed
genes. Although an absolute quantification of protein levels
is not possible with our shotgun approach, we performed a
semiquantitative analysis based on spectral counting [19–23].
Surprisingly, we observed that proteins encoded by operons
are expressed far more strongly than those encoded by
individually transcribed genes: we observed 84% of the
former, with a median relative abundance of 20 ppm (parts
per million of total protein molecules), but only 47% of the
latter with a median relative abundance of 5 ppm (Figure 4A).
The same tendency was found when analyzing publicly
available transcript-abundance data (Figure 4B). This striking
observation confirms that operons are preferentially made up
of genes that are strongly transcribed, and we now establish
that this is reflected also at the protein level: operon proteins,
on average, are more than 3-fold more abundant than
proteins from single-gene transcripts. Apart from grouping
strongly expressed proteins, operons are also expected to
facilitate coordinated regulation of their constituent genes.
We assessed whether this is the case by searching for operons
that were either fully expressed (i.e., all encoded proteins
detectable) or silenced (none or very few of the encoded
proteins detectable). Indeed, we found significantly more
operons of both types than expected by chance, as illustrated
for operons of lengths 4 to 6 (Figure S2). In principle, our
observations could be stemming from a limited selection of
tissues only, for example from the hermaphrodite germline,

Figure 4. Operon Genes Are More Highly Expressed Than Singleton Genes

(A) Proteins whose genes are organized in operons were identified more
frequently (84%) and more abundantly (median expression: 20 ppm)
compared to proteins encoded by individually transcribed genes (47%;
5 ppm). p-values: double asterisks (**) indicate better than 1E�10; triple
asterisks (***) indicate better than 1E�15.
(B) A similar result is obtained when analyzing Affymetrix data instead
(albeit with a smaller abundance difference). In both panels, the left-most
data column encompasses singleton genes (i.e., not in operons), and the
four columns to the right encompass genes in operons of various
lengths. Medians are indicated as black dots, and whiskers encompass
the range from 25% to 75% of values.
doi:10.1371/journal.pbio.1000048.g004
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where operons are thought to be strongly expressed during
oogenesis [24]. However, we observed that operon proteins
are more abundant even in dauer and L1-stage larvae, which
both should have very little germline material (Figure S3). We
further checked whether our observation could be explained
by systematic differences in length or transmembrane seg-
ments of operon proteins. Although we did observe slight
differences in length and transmembrane content—operon
proteins are on average 11% longer, and transmembrane
proteins are 40% less frequent—these differences were not
sufficient to explain the increased abundance of operon
proteins (unpublished data). Together, our observations
indicate, for the first time, that operons in C. elegans ensure
the coordinated regulation of highly expressed proteins.

Comparison to the D. melanogaster Proteome Dataset
In this study, we had the unique opportunity to compare

large-scale proteome datasets from two different animal
species, owing to the recent publication of the D. melanogaster
proteome [10] (http://www.mop.uzh.ch/peptideatlas/; previous
work in D. melanogaster had mainly focused on protein–protein
interactions or subproteomes only [25,26]). We performed
spectral counting for both organisms to obtain semiquanti-
tative measurements of protein abundance, and compared
these to published mRNA expression data derived from
Affymetrix [27,28] and serial analysis of gene expression
(SAGE) platforms [27,29]. In the C. elegans and D. melanogaster
proteomes, 2,695 pairs of orthologs were identified for which
all three types of data were available. Surprisingly, we
observed that orthologs showed a strong correlation in
protein abundances across the two organisms, despite more
than 600 million years of separate evolution (Spearman rank
correlation RS ¼ 0.79; Figure 5A). Notably, this biological
correlation at the protein level between the two species is even
higher than the within-species correlation between protein
and transcript abundances (within C. elegans:RS¼0.59 and 0.44
for protein-Affymetrix and protein-SAGE, respectively; with-
in D. melanogaster: RS¼ 0.66 and 0.36, respectively). In contrast
to the protein-level correlation, the abundance correlations at
the transcript level between the two species were also rather
low (Figure 5B). Interestingly, the overall protein-abundance
correlations are not equally tight across functional categories:
the highest correlation was observed for the functional
category ‘‘translation’’ (RS ¼ 0.93) and the lowest for the
category ‘‘regulation of biological process’’ (RS¼ 0.65).
Despite the fact that it is difficult to compare tissues and

developmental stages across organisms, our analysis provides a
first insight into the evolutionary behavior of animal proteins
over long time scales. It is important to point out that for all six
data points, several developmental stages and/or tissues had
been mixed, but that these were not, of course, always directly
equivalent and comparable between the two organisms.
However, many of the ancient animal orthologs that we studied
here can be expected to be expressed similarly across many cell
typesand stages, andwe thus attempted tocaptureanorganism-
wide ‘‘average’’ proteome for both animals. That notwithstand-
ing, we also repeated the analysis for one set of samples that is
arguably more directly comparable: mixed staged embryos
sampled in both D. melanogaster and C. elegans at the proteome
and at the transcript levels (Figure S4). Here again, we saw that
protein abundances correlated far better (RS ¼ 0.70) across
organisms than transcript abundances (RS¼0.50).

Figure 5. Interspecies Comparative Proteomics of Orthologous Proteins

in C. elegans and D. melanogaster

(A) Protein abundances deduced from spectral counting of 2,695 pairs of
orthologs from both species are shown. Medians of equal-sized bins are
indicated as crosses; whiskers encompass the range from 25% to 75% of
values. The distribution of the orthologs (dots) is indicated in the
background. The distribution and correlation coefficients of proteins
involved in signal transduction and translation are shown in the inset.
(B) The correlation coefficient of RS ¼ 0.79 between the two species is
higher than that of the comparison between protein and transcript
abundance within the organisms, based on SAGE or Affymetrix data.
(C) For C. elegans, we plotted protein abundance versus sequence
conservation (the latter determined by alignment with the
D. melanogaster orthologs). All correlation coefficients are rank-based
with p-values better than 2.2E�16.
doi:10.1371/journal.pbio.1000048.g005
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Another potential complication for our analysis lies in the
technique of spectral counting. Individual tryptic peptides
are known to ionize and be detected with widely differing
efficiencies in mass spectrometers. Although protein con-
servation between C. elegans and D. melanogaster is low (;40%
sequence identity), a higher-than-expected abundance corre-
lation might still result if equivalent peptides in both
organisms were correlated in their suitability for MS. We
assessed the extent of this effect by making the spectral
counts independent: For any given section in the alignment
of two orthologs, only one of the proteins was allowed to
generate peptide counts; these sections were alternated
across the length of the alignment, effectively reducing the
data by half. As expected, this lowered the abundance
correlation, but not by much (RS ¼ 0.68). Importantly, the
resulting correlation is still much higher than the correlation
of transcript abundances across organisms (Figure S5).

Since one of our original interests was to characterize the
‘‘core animal proteome,’’ we also analyzed lower-coverage
datasets from two additional organisms: Saccharomyces cerevisiae
[30] and Mus musculus ([21]) (for the latter, we additionally
included plasma data from PeptideAtlas; http://www.
peptideatlas.org/). Comparative proteomics using multiple
organisms has recently become popular, for example in
bacteria [31], but has not yet been possible for animals. We
searched for groups of orthologs that were detected in all four
organisms; these would constitute the universally detectable
eukaryotic proteome core. We found 847 such proteins,
mostly from information-processing and metabolism genes.
Conversely, we found 1,287 proteins to be detectable in all
three animals, but not in yeast. This latter set might be
considered the specific core of multicellular animal pro-
teomes. However, it is clear that neither of these sets is
complete, as of yet, mostly due to low coverage in mouse.

Expression Levels of Duplicated Genes
Our protein-abundance estimates from two organisms also

allowed us to study in more detail the fate of duplicated genes.
Here, of particular interest, are cases inwhich a gene family has
duplicated in one lineage (fly or worm), but not in the other.
It is known that long-term retention of duplicated gene copies
requires neo- or subfunctionalization [32–34], but it is unclear
what consequences this has for overall protein-abundance
levels. We found that when averaging over all cases of lineage-
specific gene duplications (Figure S6), the abundance of
duplicated genes is significantly lower than that of their
nonduplicated counterparts in the other lineage. Strikingly,
however, when all the duplicated genes of a given gene family
are pooled, they tend to add up again to the original
abundance of the nonduplicated counterpart (Figure S6).

Discussion

We describe here a comprehensive inventory of C. elegans
proteins, the functional characterization of this inventory,
and the first-ever comparison of two such inventories
between two model animals (‘‘comparative proteomics’’).
Although some subsets of the proteome are more difficult
to analyze (e.g., the membrane compartment), we achieved a
relatively thorough representation of the genome, where the
major exceptions can be explained biologically. For example,
the systematic underrepresentation of seven-transmembrane

proteins appears to be caused mainly by G protein–coupled
receptors. The putative chemoreceptor gene families in C.
elegans encompass about 7% of its total genome [35], and
many are thought to be expressed only in a few neurons each
[14–16]. Despite their generally low abundance, we did
identify 172 seven-transmembrane receptor proteins, show-
ing that they are, in principle, amenable to high-throughput
MS analysis (this is relevant, for example, for screens of
putative therapeutic targets).
We also demonstrated that a whole-proteome analysis of a

model organism can contribute to an improved genome
annotation. First, we experimentally confirmed the expres-
sion of 1,062 predicted genes for which no transcript data
were available, but for which our proteome data allowed the
extraction of a first rough expression pattern. Second, we
identified novel peptides from spectra that could not be
matched to annotated gene models, suggesting a way to
more precisely map open reading frames and splice isoforms
to the genome.
With respect to genome organization, we found that, in

C. elegans, genes in operons are far more consistently and
more strongly expressed than individually transcribed genes.
In principle, this observation could be an artifact of genome
annotation—if a disproportionally large number of anno-
tated nonoperon genes were misannotations that are bio-
logically meaningless. This is highly unlikely, however, since
more than 6,000 such misannotations would be needed to
reconcile the observed differences. Instead, it is likely that
operons in C. elegans indeed serve to group strongly expressed
genes into coregulated transcription units. Another question
that arises is whether these genes were highly expressed even
before they were grouped into operons, which would hint at a
possible selective advantage for the grouping (e.g., to enable
more efficient, more reliable, or more uniform transcription
of genes whose products are in high demand). This is difficult
to address conclusively, but our comparison to D. melanogaster
provides some information: we observe that orthologs of
operon genes are more strongly expressed even in the fly
(Figure S7), where they are not arranged in operons nor are
even neighbors on the genome. If one assumes that the
operons in C. elegans are the derived state, then the
corresponding genes were indeed already strongly expressed
before they formed operons.
The comparison of our data to the D. melanogaster proteome

also sheds some light on an important evolutionary puzzle,
namely the surprisingly low correlation between mRNA
expression levels of orthologous genes across animal species
[36,37], despite evidence for strong stabilizing selection against
expression changes in experimental evolution [38]. We found
that the abundances of orthologous proteins from worm and
fly correlate well (RS¼0.79), far better than the corresponding
abundances of mRNA transcripts (RS , 0.50; Figure 5B).
There are several possible explanations for this finding: First,

sweeping changes within the transcriptional machineries in
oneorboth organisms could have resulted in global differences
in transcript abundance, whereas selection would have kept
protein abundances at least partially stable. One candidate for
such a mechanistic change could be, for example, the unique
trans-splicing mechanism of nematodes. A second possible
explanation might be that posttranslational regulation may
have changed systematically, for example due to differences in
developmental strategies, physiology, or life styles of the two
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animals. Here, possibly relevant changes include the fixed cell
lineage of nematodes, differences in reproductive strategies,
increased endurance in nematodes (dauer stage), or the
constraints imposed on D. melanogaster because of its need for
metamorphosis and its higher motility (flight).

However, in our view, the most parsimonious explanation
might be that many changes in the transcriptome might be
neutral, or at least nearly neutral [36]. Ultimately, it is the
protein levels that are under selection. Protein levels are not
only determined by mRNA abundance, but are equally
affected by translation efficiencies, protein half-lives, and
other factors. Genetic mutations resulting in small changes
on any of these levels might persist for some time in a
population, as long as their fitness effects are small (around
1/[2Ne] or less). This might be sufficient time to allow for
compensatory mutations either in the same gene or elsewhere
in the genome, which would reconstitute optimal protein
abundance through action on the same or another factor that
influences protein abundance. Thus, changes in mRNA
expression could be offset by opposite changes in translation
rate or protein half-life, and vice versa. Over evolutionary
time scales, such small changes may accumulate, resulting in
appreciable changes of mRNA abundance, whereas protein
abundance would remain roughly constant. This model is a
generalization of the concept of compensatory mutations
that explains the rapid divergence of some cis-regulatory
nucleotide sequences despite the maintenance of stable
transcript levels [39], or the conserved expression of
assembled protein complexes despite variable expression
patterns of their individual components [40].

The presence of several interacting levels of protein-
abundance regulation also would explain another two of our
observations: a wide variance of the number of mature
proteins per transcript, and a correspondingly low correlation
between protein and transcript abundance within an organ-
ism (interestingly, the latter correlation is quite similar
between our C. elegans data and data published in yeast [41]
[RS¼0.57]). Our data, in principle, provides an opportunity to
study transcript features that would directly influence the
ratio of proteins per transcript (and thereby potentially
uncover novel mechanisms of translational regulation). How-
ever, when checking the influence of transcript length, GC
content, or UTR length, we failed to detect correlations with
protein/transcript ratios (unpublished data). We did observe a
weak, but significant, positive correlation of our protein/
transcript ratios and experimental protein half-life measure-
ments of orthologous proteins in yeast [42] (unpublished
data), suggesting that protein stability is indeed one of the
factors determining the steady-state protein/transcript ratio.

We note that the most abundant proteins (often found in
central pathways like energy metabolism or protein synthesis)
also tend to be the ones that show the best abundance
correlation between species. This may simply be the case
because of a greater relative measurement accuracy for
abundant proteins. However, highly expressed genes are also
more likely to be housekeeping genes [43], and may thus be
more likely to be under the same evolutionary pressures in
different organisms. Strong and constant stabilizing selection
is also consistent with our observation that amino acid
sequences of more highly expressed proteins evolve more
slowly (Figure 5C), mirroring the analogous observation for
mRNA expression data [44].

When we stratify proteins by functional categories, we find
that those involved in translation and in core metabolism are
those with the most highly correlated abundances across
species. These functional groups are also those where the
coexpression between pairs of transcripts is most highly
conserved across species [45]. Furthermore, the same catego-
ries also tend to show the best correlation within each
organism, with respect to rank-correlation between tran-
scripts and proteins (Table S2). We also find that the
correlation between transcript and protein levels is partic-
ularly poor for genes that are presumably heavily regulated
(the categories ‘‘signal transduction’’ or ‘‘transcriptional
regulation’’), arguing for abundant posttranscriptional regu-
lation in these functional classes.
Proteins differ not only in their mean abundance, but also

in the variance of this abundance among individuals (‘‘noise’’)
[46]. Interestingly, whereas yeast proteins involved in trans-
lation also show low levels of noise [47], other groups of
proteins found here to be conserved in their abundance
between species (e.g., protein metabolism) are characterized
by high protein expression noise [47]. Thus, it appears that
abundance fluctuations on short time scales (within popula-
tions) are partially decoupled from fluctuations on long time
scales (between species). However, as natural variation is the
substrate of evolutionary change, we expect that changes in
mRNA levels via compensatory mutations may occur faster in
proteins that exhibit higher levels of noise; this remains to be
tested in future studies.
Our comparative analysis underlines clearly the necessity

and usefulness of quantitative proteome analyses, since these
better reflect the abundance of the actual effectors of
biological processes. Most likely, the actual conservation of
protein levels is even higher than what we report here, due to
the shortcomings of a simple spectral-counting procedure. In
fact, comparisons across organisms might generally provide a
good test scenario to improve spectral-counting algorithms
or other proteomics algorithms: the higher the abundance
correlation, the more precise the measurements (due to the
high number of data points, and due to the quickly changing
positions of tryptic cleavages, this is difficult to ‘‘over-train’’
by choosing biased parameters). With respect to the tran-
scriptomics datasets that we used, the above test argued for a
better quality of the Affymetrix data, as compared to SAGE,
because the latter were seen to correlate less well across
organisms. This is intriguing, and it may point to additional
biases in the SAGE procedure (for example, due to the added
molecular biology steps of cleavage and ligation) [48].
For those instances where orthologs were not found to be of

similar abundance, one can speculate that this difference
reflects differing roles (or even molecular functions) of the
orthologs. Thus, these proteins are of particular interest
when studying the evolutionary differences between species.
Alternatively, differences in technical aspects for particular
proteins might occur, such as shifted or absent trypsin
cleavage sites or differences in protein solubility. Interest-
ingly, we did not lose the observed interspecies correlation
even for quite low-abundance proteins such as those involved
in signal transduction (our measurements have a dynamic
range of more than three orders of magnitude). This means
that low-abundance measurements are still quantitative, at
least to some degree.
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In our analysis of gene families with lineage-specific
duplications, we found that duplicated proteins generally
have lower abundance than their nonduplicated counter-
parts, whereas the summed abundances per gene family
remained roughly constant. This finding might be most
parsimoniously explained by a prevalence of subfunctional-
ization among duplicated genes, although it is also consistent
with other scenarios (e.g., complementarity of tissue expres-
sion domains, functional fine-tuning, or subfunctionalization
followed by neofunctionalization [49]). Of course, protein
abundances alone cannot directly inform us about any
changes in the functions of duplicated genes. However, our
finding does suggest that cases where an increased demand
for protein product would provide the sole driving force
behind gene copy retention are probably rare.

With our dataset, we established an inventory of where and
how proteins of interest can be specifically accessed using MS.
It enables the generation of a proteotypic peptide library (i.e.,
peptides in a protein sequence that are most likely to be
consistently and confidently observed by current MS-based
proteomics methods). This library in turn can be used for
targeted analyses and comparative studies of expressed
proteins [10,50–52] by spiking the samples to be analyzed
with chemically synthesized proteotypic peptides, or by
selected reaction monitoring (SRM) MS. Our C. elegans
proteome dataset will be made publicly available within
WormBase and will thus be useful for the entire C. elegans
research community. In general, proteomics data like ours is
closer to the biologically active players than transcriptomics
data. It should therefore be increasingly used to investigate
biological phenomena and mechanisms underlying disease
pathogenesis such as neuronal degeneration and cancer
development, and for the identification of conserved ther-
apeutic target proteins.

Materials and Methods

C. elegans. C. elegans wild-type strain N2 (Bristol) was grown on 9-cm
nematode growth medium (NGM) agar plates seeded with a lawn of
the E. coli strain OP50 or in 100 ml of liquid cultures in S-basal buffer
in beveled flasks. Worms were harvested from plates or liquid culture,
and separated from the bacteria by washing with water or sucrose
flotation. For the collection of embryos, the worms were synchron-
ized, and eggs were removed from agar plates or obtained from the
hermaphrodites by bleaching. Worm and egg pellets were homogen-
ized with glass beads (diameter of 212–300 lm; Sigma-Aldrich) in the
ratio of 1:1:2 (worms:beads:buffer) in a cell disrupter (FastPrep FP120,
Thermo Savant; Qbiogene) at 4 8C three times for 45 s at level 6. The
buffer used was 50 mM Tris/HCl (pH 8.3), 5 mM EDTA, 8 M urea.
After glass bead treatment, 0.125% SDS was added, and the
homogenate was incubated for 1 h at room temperature (RT) to
solubilize proteins. For other experiments, the worms or eggs were
homogenized with glass beads in 50 mM Tris/HCl (pH 8.3), 5 mM
EDTA, then 0.75% or 1% Rapigest (Waters) was added, the
homogenate was heated at 95 8C for 5 min, and incubated at RT
for 30–60 min with gentle agitation. Cell debris was removed by
centrifugation, and the protein concentration was determined using
the Bradford reagent (Sigma-Aldrich).

Tandem mass spectrometry. The peptides were subjected to
reversed-phase capillary chromatography using a 75-lm 3 8-cm self-
packed C18 column (Magic C18; Michrom) at a flow rate of 250 nl/min.
Peptideswere elutedwith a gradient between solventA (5%ACN, 0.2%
formic acid) and solvent B (80%ACN, 0.2% formic acid). The gradient
was from 5% up to 45% solvent B within 69 min. The peptides were
identified by CID (collision induced dissociation) on a Thermo-
Finnigan ion trap mass spectrometer ‘‘LTQ’’. Six dependent scans
followed each survey scan. Raw data were converted into mzXML files
and searched against a C. elegans database derived from the Wormpep
database (http://www.wormbase.org, release WS140) using the Sequest

program [53]. The search parameters used were two missed cleavage
sites, two tryptic termini, a mass tolerance of 3 Da for the parent ion
and 0.95 Da for the fragment ion, optional oxidized methionine, and
depending on the experiment, modified cysteine. Peptide assignments
were statistically validated at peptide level using PeptideProphet [54],
and peptides with a probability score of 0.9 or higher and the proteins
they belong to were selected. For the qualitative analysis of the
proteome (Figure 2), peptidesmatching tomore thanoneprotein (such
as duplicated tubulins or histones), or matching to several splice
variants of a protein, were counted only once (for the first entry of the
search results). For the quantitative analysis, however, such peptides
were assigned fractionally (see below). From a total of 18 different
experiments (Table S3), we identified 10,977 proteins from10,631 gene
loci (Table S1). The comparative analysis of the different protein
parameters was also based on WS140. For technical reasons, all the
information for the other functional analyses was extracted from
release WS160 using WormMart (http://www.wormbase.org/biomart/
martview). The FDR for single hits was estimated first based on an
experiment inwhich isoelectric focusing of peptideswas performedon
an immobilized pH gradient strip (pH range 3–5.6), followed by
subsequent analysis of computationally predicted pIs for each peptide
identification, and second by a new model based on a decoy search
strategy (L. Reiter, M. Claassen, S. P. Schrimpf, J. M. Buhmann, M. O.
Hengartner, et al., unpublished data). To evaluate potential bacterial
contamination in our dataset, one experiment was searched against a
combined C. elegans (WormBaseWS140) and E. coli (SPproteomes at the
European Bioinformatics Institute [EBI], release 2005-03-19, 4,338
entries) database using the same search parameters as for the searches
against the C. elegans database.

Bias analysis of protein parameters. After redundancy analysis,
22,269 distinct proteins (including splice variants, WormBase WS140)
and 10,977 proteins in our dataset were compared for the bias analysis
with respect to different protein parameters. Tools from the ExPASy
Web site (http://www.expasy.ch) were used to calculate the pIs of
proteins (protein parameter tool ‘‘protparams’’) and their hydro-
phobicity (gravy computation ‘‘grand average hydrophobicity’’). The
statistical analysis shown in Figure S8 was carried out as described
before [10]; the p-values for all parameter analyseswere1E�10orbetter.

Transmembrane domains and GO slim terms. The number and
orientation of transmembrane domains of the proteins in WormBase
(WS160) and in our dataset were predicted using Phobius [11]. Only
gene loci—not splice variants—were processed. Whenever trans-
membrane predictions differed for splice variants, the predictions
for the longest splice variants were used. For the GO slim analysis, the
GO terms listed in WormBase (WS160) were mapped onto higher-
level terms using the GO slim guide (http://www.geneontology.org),
with two exceptions: the terms ‘‘membrane’’ and ‘‘integral to
membrane’’ were not mapped to the higher category term ‘‘cell,’’
but instead were retained. In Figures 2E and S9, we assigned the GO
slim terms of the category ‘‘molecular function’’ to the predicted
transmembrane proteins. For 412 proteins, there was more than one
entry for molecular function. For the statistical analysis of the GO
slim categories in Figure 2, we applied the Fisher exact test and
included the Bonferroni correction for multiple testing. We plotted
the log ratio of observed versus expected, using the proportions in
WormBase as the expectation. The GO slim categories with a p-value
better than 0.05 are shown (Figure 2E and 2F).

Genome annotation. We mined our dataset for nonannotated
translated regions by preparing a whole-genome open reading frame
database that was searched using the Sequest algorithm [53]. To do
this, WormBase release WS160 was used to translate each chromo-
some into all six reading frames. Open reading frames longer than 20
amino acids were assembled into a database with headers containing
the coordinates of the sequences on the genome. The resulting
database contains 3,136,258 open reading frames and 132,018,220
amino acids. A subset of our data (experiment 15) obtained by
isoelectric focusing, comprising approximately 304,000 MS/MS
spectra, was searched at the Functional Genomics Center Zurich.
We allowed fully tryptic peptides with up to two missed cleavages, and
specified oxidized methionine as variable modification and carbamy-
lated cysteine as static modification. The results were further
analyzed with PeptideProphet [54], and 27,940 search hits with a
PeptideProphet score greater than or equal to 0.95 were selected.
From these, we removed 26,952 scans that also generated a hit against
the normal Wormpep140 protein database with a score greater than
0.8. Of the remaining 988 spectra, 789 were further observed to exist
in Wormpep178 or an E. coli database and were therefore omitted,
resulting in a final set of 199 spectra belonging to 173 different
peptides. For the resulting peptides, a theoretical pI value was
calculated and compared to the mean pI of all peptides in the
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corresponding fraction. Only peptides with a delta pI value smaller
than or equal to 0.5 were selected. This resulted in 78 distinct peptides.

Operons. WormMart (http://www.wormbase.org/biomart/martview)
was used to extract operon architectures from WormBase release
WS160. To test whether the coregulation of genes in operons would
be detectable also at the level of translated proteins, operons were
first divided into length classes (here, length is defined as the number
of cotranscribed genes in each operon). For each length class, the
fraction of operon genes was then determined for which at least one
peptide was detected in at least one proteomics experiment. This
fraction determines how many proteins should, on average, be
detectable from a single operon if expression of the operon genes
were truly independent (when assuming independence, the number
of detections per operon should follow a binomial distribution,
shown as grey lines in Figure S2). Applying the two-sided Kolmogor-
ov-Smirnov test yielded p-values better than 1E�10. For the study of
operons in specific stages (Figure S3), only the proteome data was
analyzed, limited to the experiments done in these stages (with
concomitantly reduced spectral counts).

Semiquantitative interspecies proteomics comparison. For the
semiquantitative comparison between C. elegans and D. melanogaster
proteomes, we used the STRING database and the Smith-Water-
man similarity relations stored therein to compute orthologous
groups [55]. This analysis retrieved 4,184 loci in C. elegans, and
4,302 in D. melanogaster. When working with orthology sets, each pair
of orthologs was aligned with ‘‘muscle’’ [56], available from http://
www.drive5.com/muscle/. The protein sequences used were extracted
from WormBase WS160 and from FlyBase release 5.1 (http://flybase.
org). Due to lineage-specific gene duplications, some proteins had
several orthologs. For the interspecies abundance correlation
comparison, we summed up the abundances in these cases.

We independently tested another source of orthology information,
InParanoid [57], which resulted in slightly more orthologs but also in
a somewhat lower interspecies abundance correlation (RS ¼ 0.76
versus 0.79). Conversely, we also tested a stricter set of orthologs, to
test for and exclude artifacts caused by potentially undetected
paralogy. To conclusively separate orthologs from paralogs can be
difficult, and this is the subject of intense study [58–60]. Therefore, we
constructed a very strict set of orthologs by searching for reciprocal
best matches between worm and fly, with the additional constraint
that any extra homologs within these genomes had to exhibit no more
than half the alignment score than the score between these organism
(plus, the score between the organisms had to be 60 bits or higher).
This strict set contained only 2,001 pairs of orthologs, and resulted in
an interspecies abundance correlation of 0.80. This shows that our
high correlation is not caused, or affected, by the presence of
paralogs in the comparison.

We calculated the relative abundance of a protein by counting how
often any of its amino acids had been identified in any peptide,
divided by the total number of amino acids of the protein sequence.
A length restriction to peptides with �7 and �40 amino acids
(modified from [22]) was applied.

a ¼

X

i

numberðpiÞ � lengthðpiÞ
X

j

lengthðqjÞ � f ðqjÞ

where a ¼ protein abundance, p ¼ identified peptides, q ¼ tryptic
peptides (in silico digest), and f(q)¼ peptide length correction factor.

The peptide-length correction factor takes into account the
technical bias of the MS instrument, which resulted in certain
peptide lengths being observed more often than others. This was
learned from the data by comparing the observed peptide-length
spectrum with the expected, and was corrected accordingly (similar
to [22]). In our hands, peptide length proved to be the most
important determinant of peptide observability, since using the
original APEX implementation (‘‘absolution protein expression
profiling’’) [22] or a retrained version of the same classifier, did not
further improve the observed cross-organism abundance correlation
between C. elegans and D. melanogaster (RS¼ 0.78).

A relative protein abundance of 1 means that the total number of
amino acids in the identified peptides equals the number of amino
acids in the protein. Whenever a peptide could be assigned to several
proteins (because of identical predicted tryptic peptides), the amino
acids were assigned fractionally. Peptides specific for any of the splice
isoforms originating from a given locus were pooled. This approach
means that the unit of interest in our comparisons is the gene locus—
not individual splice isoforms—consistent with the observed lack of

conservation of alternative splicing at very large evolutionary
distances [61]. Finally, protein abundances were normalized to total
amount of protein detected. To plot the data, orthologs were binned
into eight groups of equal size (sorting for binning was xþ y), and the
means, as well as first and third quartiles, for each group were
calculated. For the comparison of gene and protein expression, SAGE
data for C. elegans [27] were downloaded from http://tock.bcgsc.bc.ca/
cgi-bin/sage160. In order to best reflect the developmental stages
analyzed in our proteome data, we chose the stages SWN21, SWL12,
SWL21, SWL32, SWL41, SWYA1, MIXED, SW022, and DAUER.
Only entries with ‘‘source ¼ coding_RNA’’ were considered, and
the average of the nine columns was calculated. SAGE data for
D. melanogaster [29] were obtained from Professor San Ming Wang
(Northwestern University, Evanston, Illinois). D. melanogaster SAGE
tags were mapped to all transcripts from FlyBase release 5.3. The
C. elegans Affymetrix GeneChip data were obtained from the Genome
British Columbia C. elegans Gene Expression Consortium at http://
elegans.bcgsc.bc.ca. The D. melanogaster Affymetrix GeneChip data
[28] were obtained from http://www.flyatlas.org. For 2,695 pairs of
orthologs protein abundance, SAGE and Affymetrix data were
compared (in case of several paralogs, only one of them had to have
data from all three measurements). For the comparisons of different
abundances, Spearman rank correlation coefficients were computed
to avoid assumptions about the underlying distributions. Probabil-
ities for the correlation coefficients were calculated as implemented
in R; all corresponding p-values were better than 2.2E�16. Further
supporting the validity of spectral counting as a semiquantitative
measure is a comparison of C. elegans protein abundance data against
protein abundance data in yeast [41]. Importantly, the latter is not
based on MS, but on immunodetection of tagged open reading
frames. Orthologs correlate linearly in their abundance over two
orders of magnitude (RS ¼ 0.54; Figure S10). The correlation for
sequence conservation (aligned to D. melanogaster) and protein
abundance was calculated for 4,013 C. elegans proteins. Orthologs
were binned into eight groups of equal size (Figure 5C).

Supporting Information

Figure S1. Tandem Mass Spectra of Novel Peptides

The annotated MS/MS spectra of peptides from (A) T01B11.3 (SYN-4)
and (B) F47B7.7.

Found at doi:10.1371/journal.pbio.1000048.sg001 (289 KB PDF).

Figure S2. Coordinated Expression of Operon Genes

The number of detected loci per operon deviates from what would be
expected under simple independence, as shown exemplary for
operons of lengths 4–6 (A–C). A higher fraction of operons than
expected is either fully expressed (all proteins detected) or hardly
expressed at all (none or only few proteins detected).

Found at doi:10.1371/journal.pbio.1000048.sg002 (23 KB PDF).

Figure S3. Proteins Encoded by Operon Genes Are More Abundant
Than Those of Singleton Genes, Even When Focusing Exclusively on
Embryos, L1, and Dauer Larvae

Although clearly significant, the effect size is lower than for the
whole, presumably due to undersampling (each plot represents less
than 12% of the total data). Medians are indicated as black dots, and
whiskers encompass the range from 25% to 75% of values.

Found at doi:10.1371/journal.pbio.1000048.sg003 (775 KB PDF).

Figure S4. Comparing the Abundances of Proteins and Transcripts,
Specifically in Embryos Only (Worm and Fly)

(A) Protein abundances of 1,195 conserved pairs of orthologs, which
were detected in embryos of both D. melanogaster and C. elegans, and
for which transcript data were available (see below). Protein
abundances were estimated by spectral counting (limited to data
from experiments using embryos, reducing the data to about one
tenth of the total).
(B) Spearman rank correlation coefficients. Protein abundances
correlate better across organisms than transcript abundances, and
better than protein versus transcript within organisms.
(C) Transcript abundances of the same 1,195 conserved pairs of
orthologs as in (A), from published measurements using Affymetrix
arrays. Raw CEL files were reanalyzed using the MBEI algorithm as
implemented in the cCHIP package. C. elegans embryo data were from
the Genome British Columbia C. elegans Gene Expression Consortium,
and the D. melanogaster data was from the ArrayExpress database,
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using wild-type controls from the experiments E-GOED-2780,
E-MEXP-879, and E-MEXP-623, which cover embryonic development
at a number of time points ranging from 2.5 h to 19 h after egg-laying.
Medians of equal-sized bins are indicated as crosses; whiskers
encompass the range from 25% to 75% of values.

Found at doi:10.1371/journal.pbio.1000048.sg004 (430 KB PDF).

Figure S5. Down-Sampling of Proteomics Data to Ensure Independ-
ence of Peptide Counts

Individually aligned pairs of orthologs were scanned for residues R
and K, in order to identify aligned tryptic cleavage sites (red vertical
lines). Peptide identifications were then down-sampled in alternating
stretches of the alignment, to make sure that orthologous peptides
are counted for one of the two organisms only. The Spearman rank
correlation dropped to 0.68. Intriguingly, this result is almost
identical to what is expected simply due to the reduction of the data
by half (RS ¼ 0.67 when randomly discarding 50% of the peptides);
this shows that the strong correlation between C. elegans and
D. melanogaster is not simply due to a tendency of orthologous
peptides to be detected equally well. To also exclude local effects (i.e.,
dependencies between neighboring peptides), an independent test
was performed for which proteins were cut in half, and N-terminal
and C-terminal fragments were counted separately. In this test, when
comparing orthologous proteins only via nonoverlapping halves (N-
terminus versus C-terminus), the cross-organism correlation dropped
to 0.66. In contrast, when comparing N-termini with N-termini (or C-
termini with C-termini), the correlation was higher (0.71). This
indicates that there are indeed some local dependencies between
peptide counts, but not enough to explain the high interorganism
correlation we observe when using the full data.

Found at doi:10.1371/journal.pbio.1000048.sg005 (104 KB PDF).

Figure S6. Expression Levels of Duplicated Genes

Genes were classified as duplicated when an orthologous group
contained more than one gene in one lineage, but only a single gene
in the other lineage. Abundances of duplicated genes were either
plotted separately (A), or pooled for each group (B). Columns marked
with asterisks (***), are significantly different (p-value better than
1E�15). Medians are indicated as black dots, and whiskers encompass
the range from 25% to 75% of values.

Found at doi:10.1371/journal.pbio.1000048.sg006 (227 KB PDF).

Figure S7. Fly Orthologs of Worm Operon Genes

D. melanogaster genes were classified according to whether their
orthologs in C. elegans are part of operons. Note that these genes are
not organized in operons in the fly, nor are they even neighbors on
the chromosome. Still, fly proteins are more abundant when their
worm orthologs are arranged in operons. p-values: a single asterisk (*)
indicates better than 1E�5; double asterisks (**) indicate better than
1E�10; and triple asterisks (***) indicate better than 1E�15. Medians
are indicated as black dots, and whiskers encompass the range from
25% to 75% of values.

Found at doi:10.1371/journal.pbio.1000048.sg007 (174 KB PDF).

Figure S8. Statistical Bias Analysis of the Protein Parameters Length,
pI, and Hydrophobicity

Distributions of the parameters of the identified proteins versus all
proteins in WormBase (WS140). Overrepresented areas are shown in
green, underrepresented areas in yellow (p-values were better than
1E�10; for details about the applied statistics, see [10]).

Found at doi:10.1371/journal.pbio.1000048.sg008 (19 KB PDF).

Figure S9. The Predicted C. elegans Transmembrane Proteome and Its
Molecular Function

We predicted the transmembrane topology of the entire C. elegans
proteome and included the molecular function of the proteins with
transmembrane helices. The percentages are referring to the entire
dataset. Proteins with a cytoplasmic C-terminus were plotted

upwards; proteins with an extracytoplasmic C-terminus were plotted
downwards. The color code for the molecular function is indicated.

Found at doi:10.1371/journal.pbio.1000048.sg009 (1.39 MB PDF).

Figure S10. Further Support for the Validity of Protein Quantifica-
tion in C. elegans, from Comparison against Published S. cerevisiae Data
Protein abundances deduced from spectral counting (C. elegans) and
from protein tagging and immunodetection (yeast [41]) of 1,092 pairs
of orthologs from both species yielded a correlation coefficient of
RS ¼ 0.54. Medians of equal-sized bins are indicated as crosses;
whiskers encompass the range from 25% to 75% of values.

Found at doi:10.1371/journal.pbio.1000048.sg010 (143 KB PDF).

Table S1. Identified C. elegans Proteins and Peptides

In our shotgun proteomic approach, 84,962 unique peptides were
identified after filtering with the PeptideProphet probability score
equal to or greater than 0.9. The scan numbers, the peptides, and the
coding sequence of the proteins they mapped to are listed.

Found at doi:10.1371/journal.pbio.1000048.st001 (8.55 MB ZIP).

Table S2. Intraspecies Protein versus Transcript Correlations, Broken
Down into Functional Categories

Both fly and worm proteins were mapped to GO slim categories by
a similar procedure. In both organisms, comparable categories show
a high or low correlation. In addition, even categories of relatively
low abundance (e.g., ‘‘DNA metabolism’’) can have a high
correlation, indicating that the ranking is not simply based on
measurement accuracy.

Found at doi:10.1371/journal.pbio.1000048.st002 (39 KB PDF).

Table S3. List of Experiments

The experiment ID, the developmental stages of the worm, the
sample type, and the biochemical separation methods are listed.
Found at doi:10.1371/journal.pbio.1000048.st003 (18 KB PDF).
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