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Abstract

There are 106more bacterial cells in our bodies from the microbiome than human cells. Viral DNA is known to integrate in
the human genome, but the integration of bacterial DNA has not been described. Using publicly available sequence data
from the human genome project, the 1000 Genomes Project, and The Cancer Genome Atlas (TCGA), we examined bacterial
DNA integration into the human somatic genome. Here we present evidence that bacterial DNA integrates into the human
somatic genome through an RNA intermediate, and that such integrations are detected more frequently in (a) tumors than
normal samples, (b) RNA than DNA samples, and (c) the mitochondrial genome than the nuclear genome. Hundreds of
thousands of paired reads support random integration of Acinetobacter-like DNA in the human mitochondrial genome in
acute myeloid leukemia samples. Numerous read pairs across multiple stomach adenocarcinoma samples support specific
integration of Pseudomonas-like DNA in the 59-UTR and 39-UTR of four proto-oncogenes that are up-regulated in their
transcription, consistent with conversion to an oncogene. These data support our hypothesis that bacterial integrations
occur in the human somatic genome and may play a role in carcinogenesis. We anticipate that the application of our
approach to additional cancer genome projects will lead to the more frequent detection of bacterial DNA integrations in
tumors that are in close proximity to the human microbiome.
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Introduction

Lateral gene transfer (LGT) is the transmission of genetic

material by means other than direct vertical transmission from

progenitors to their offspring, and has been best studied for its

ability to transfer novel genotypes between species. LGT occurs

most frequently between organisms that are in close physical

proximity to one another [1]. Human somatic cells are exposed to

a vast microbiome that includes ,1014 bacterial cells that

outnumber human cells 10:1 [2]. Considering that (a) some

human cells are in a constant and intimate relationship with the

microbiome, (b) eukaryotes have widespread LGT from bacteria

[3], (c) bacteria in vitro can transform the mammalian genome [4],

and (d) viruses integrate into the human genome and cause disease

[5,6], we sought to investigate if LGT from bacteria to human

somatic cells may be a novel mutagen and play a role in diseases

associated with DNA damage like cancer.

Previous studies have examined LGT from bacteria to humans

that would result in vertical inheritance. During the original

sequencing and analysis of the human genome, 113 proteins

putatively arising from bacterial LGT were initially identified [7].

This was later refuted by an analysis that demonstrated that the

number of putative LGTs is dependent on the number of

reference genomes used in the analysis suggesting that the proteins

found exclusively in both bacteria and humans at that time were

due to the small sample size of genomes sequenced, instead of

LGT [8]. A subsequent phylogenetic analysis of LGT in the

human genome overlooked comparisons with all prokaryotes [9].

Both analyses only focused on full length genes, missing any

smaller LGTs or LGT of non-coding DNA. In addition, by

focusing on consensus genome sequences, these analyses focused

on LGT to the germ line and ignored somatic cell mutations.

While LGT to the germ line can affect future generations and

potentially the evolution of our species, LGT to somatic cells has

the potential to affect an individual as a unique feature of their

personal genome.

Some eukaryotes have extensive vertically inherited LGT

despite potential barriers such as the nucleus, the immune system,

and protected germ cells. DNA continues to be transferred from

mitochondria and chloroplasts into the eukaryotic nucleus. These
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organelles originated from a-proteobacteria and cyanobacteria,

respectively [10]. LGT from bacteria to eukaryotes, including

animals, is also quite widespread [11–13], particularly from

endosymbionts [3]. Wolbachia endosymbionts infect up to 70% of

all insects [14], with ,70% of examined, available invertebrate

host genomes containing gene transfers [15]. The amount of

genetic material transferred ranges from 100 bp [15,16] to

bacterial genome sized LGTs [15,17,18].

One of the best studied examples of LGT from bacteria to

eukaryotes is LGT to plants from the bacteria Agrobacterium

tumefaciens. A. tumefaciens uses a type IV secretion system to inject

bacterial proteins and its tumor inducing plasmid into plant cells

[19]. Through illegitimate recombination, the plasmid integrates

into the plant genome, and plasmid encoded transcripts are

produced using endogenous eukaryotic promoters [20,21]. The

corresponding proteins create a specific carbon source for A.

tumefaciens and promote the formation of plant tumors [19,22].

Therefore, A. tumefaciens creates a tumor environment that

promotes the bacteria’s own growth. A. tumefaciens has been shown

to transform a variety of plant and non-plant cells including

human cells in vitro [22,23].

The bacteria Bartonella henselae has also been shown to transform

human cells in vitro. Bartonella henselae is a human opportunistic

pathogen that causes cat-scratch disease [24]. B. henselae and B.

quintana are the only known bacteria to cause bacillary angioma-

tosis, the formation of benign tumors in blood vessels [24,25]. A

recent study demonstrated the ability of Bartonella henselae to

integrate its plasmid into human cells in vitro through its type IV

secretion system [26].

Bacterial plasmids have also been engineered to integrate

autonomously in vertebrate genomes using the phiC31 integrase.

A phiC31 integrase-containing plasmid was first shown to

integrate into human cells in vitro [27] at a pseudo-attP site that

does not disrupt normal gene functions. The plasmid also

integrates into mice in vivo after hydrodynamic tail-vein injection

[28] and can yield a properly expressed protein that rescues a

mouse knockout phenotype [28].

One of the key mechanisms by which some viruses promote

carcinogenesis is through their integration into the human

genome, causing somatic mutations [29–31]. In the early 20th

century viruses were suggested as a transmissible cause of cancer.

However, it was not until the mid-1960s that the capability of

viruses to promote human cancer was fully recognized [29]. The

majority of viral-associated human cancers are related to infection

with human papillomaviruses (HPV), hepatitis B and C viruses,

and Epstein-Barr virus. Together these viruses are associated with

,11% of the global cancer burden [32]. In 2002, cervical cancers

resulted in ,275,000 deaths, of which HPV had integrated into

,90% of these cancers [33].

Almost all cancers associated with Hepatitis B virus (HBV) have

the virus integrated into tumor cells [34]. Most of the observed

HBV integrations have been isolated as a single occurrence from a

single patient [6]. However, a few recurrent integrations into genes

promoting tumor formation have been identified, such as the

integration of HBV into the human telomerase reverse transcrip-

tase gene [35,36]. These mutations can result in altered gene

expression and promote carcinogenesis. The advent of next

generation sequencing has facilitated the investigation of how and

where these viruses integrate into the human genome with

unprecedented resolution and accuracy. In a recent study, next

generation DNA and RNA sequencing identified HBV integra-

tions in liver cancer genomes and concluded that the HBV

integrations disrupted chromosomal stability and gene regulation,

which was correlated with overall shortened survival of individuals

[6].

Using publicly available sequence data from the human genome

project, the 1000 Genomes Project, and The Cancer Genome

Atlas (TCGA), we examined bacterial DNA integration into the

human somatic genome, particularly tumor genomes. Here we

show that bacterial DNA integrates in human somatic genomes

more frequently in tumors than normal samples. These data also

support our hypothesis that bacterial integrations occur in the

human somatic genome and may lead to altered gene expression.

Results

Identifying bacterial integrations in the somatic human
genome

Human DNA for genome sequencing is typically isolated from

one of three sources: sperm, blood, or cell lines created by

transforming collected cells. Most of the data presented here from

the Trace Archive and 1000 Genomes project were collected from

the latter two. Systematic comparisons of the integration rate

based on tissue source is not possible because the metadata on

source can be missing, internally inconsistent, or at odds with

publications of the data. However, it is important to consider that

some of the data arises from cell lines. Cell lines may be more

permissive to LGT from bacteria. Cell lines are used frequently

because once they are generated they can be maintained in the

laboratory allowing greater access to materials by more research-

ers. On the other end of the spectrum, transfers of bacterial DNA

in sperm cells could be inherited by a subsequent generation. In

contrast, transfers in blood cells would generate somatic mutations

that would not be inherited. In addition, if a transfer occurs in a

terminally differentiated cell its fate within the individual would

even be limited.

Somatic mutations are frequently overlooked in genome

sequencing as there may be only a single instance within the

sequenced population of cells that is lost in the consensus-built

genome assembly. Therefore, we examined all available human

sequence traces for evidence of LGT to somatic cells. Previously,

we had developed a pipeline for rapidly identifying LGT between

Wolbachia and its hosts by using NUCMER [37] (Figure 1A).

BLASTN against NT was used to further validate such transfers.

Using this pipeline, 8 of the 11 hosts of Wolbachia endosymbionts

that were examined were found to have evidence of LGT between

Author Summary

There are 106more bacterial cells in the human body than
there are human cells that are part of the human
microbiome. Many of those bacteria are in constant,
intimate contact with human cells. We sought to establish
if bacterial cells insert their own DNA into the human
genome. Such random mutations could cause disease in
the same manner that mutagens like UV rays from the sun
or chemicals in cigarettes induce mutations. We detected
the integration of bacterial DNA in the human genome
more readily in tumors than normal samples. In particular,
extensive amounts of DNA with similarity to Acinetobacter
DNA were fused to human mitochondrial DNA in acute
myeloid leukemia samples. We also identified specific
integrations of DNA with similarity to Pseudomonas DNA
near the untranslated regulatory regions of four proto-
oncogenes. This supports our hypothesis that bacterial
integrations occur in the human somatic genome that may
potentially play a role in carcinogenesis. Further study in
this area may provide new avenues for cancer prevention.

Bacterial DNA Integration in the Human Genome
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the endosymbiont genome and the host chromosome [15]. In five

of these hosts, we were able to successfully characterize every LGT

we attempted to validate using standard laboratory techniques

[15]. The other three hosts were not examined further.

Bacterial LGT in the trace archive
Given our prior success with the NUCMER-based pipeline, we

used it to search for LGT in the somatic cells of humans. We

searched 113,046,604 human shotgun Sanger traces from 13

sequencing centers and .8 individuals with 2,241 bacterial

genomes using NUCMER (Figure 1A). All reads were subse-

quently searched against NT with BLASTN (Figure 1A) and

manually curated to identify (a) reads containing non-overlapping

matches to human and bacteria sequences (Table S1) and (b) read

pairs where one read matched human and the other matched

bacteria (Table S2).

These searches revealed a total of 680 traces that contain

significant non-overlapping similarity to both bacteria and

human sequences (Figure 1Aa, Table S1). There are also 319

identified clones that contain sequences with similarity to both

bacteria and human sequences (Figure 1Ab, Table S2). For

example, 40 traces and 220 clones contain bacterial fragments

with best blast matches to Lactobacillus spp. when NT was the

database. These matches were found to be distributed across an

entire Lactobacillus genome (Figure 1B) and could not be

assembled. The lack of coverage/redundancy across the LGT

junctions may be indicative of somatic cell transfers. As an

example, one such trace is illustrated that disrupts a gene

encoding an antigen found in squamous cell carcinomas [38]

(Figure 1CD). The trace containing this junction does not show

evidence of an artifact (e.g. two clones being sequenced

simultaneously) (Figure 1E).

Laboratory artifacts can lead to sequences resembling bacteria-

eukaryote somatic cell LGT. Errors can occur in clone or sequence

tracking, such that traces are assigned to the wrong project, or

through contamination of plasmid preparations that leads to two

sequences being generated simultaneously. Some cases of these

were identified and systematically culled. For example, reads with

matches to E. coli were systematically eliminated because of the

high potential for artifactual contamination of genomic DNA in

plasmid sequencing preparations. Similarly, all matches involving

Erythrobacter were eliminated since a set of traces submitted by one

Figure 1. LGT from bacteria to human somatic cells using Trace Archive data. The schematic illustrates our pipeline that identified 319
clones (a) and 680 traces (b) with the hallmarks of LGT from bacteria to humans using Trace Archive data (Panel A). The traces and clones with
similarity to Lactobacillus casei are randomly distributed across the bacterial genome (Panel B). The BLAST search results for one of these reads shows
the left portion with similarity to Lactobacillus casei ATCC334 (Panel C), while the right portion of the read has similarity to the human SCCA2 gene
(Panel D). The transfer of Lactobacillus casei DNA occurs in the fourth intron of the SCCA2 (SerpinB4) gene. The chromatogram (Panel E) shows the
junction between the sequences in C and D and appears to be a single, high quality sequence trace.
doi:10.1371/journal.pcbi.1003107.g001

Bacterial DNA Integration in the Human Genome
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center were found to contain two sequences—one for human and

one for Erythrobacter likely owing to systematic contamination of the

culture stocks or the plasmid preparations. When two templates

are present the resulting read will switch between the two

templates as the relative signal between the templates changes

resulting in a consensus read call that resembles LGT. However,

such artifacts are not readily apparent for any of the putative

LGTs described her since the sequences span multiple plates,

libraries, and runs and show no evidence of two templates (Table

S1, S2).

Ligation of bacterial DNA to human genomic DNA during

library construction can also result in chimeric clones with a single

clone with a bacterial insert and a human insert. This would be

observed as a low percentage of bacteria-human mate pairs

relative to bacteria-bacteria mate pairs. For example, if 1 in every

100,000 clones contains two inserts, as opposed to the single insert

wanted/expected, one would expect a chimeric clone with both a

human and bacterial insert would occur no more than 1/100,000,

or 0.001%. Considering that human sequences greatly outnumber

bacterial sequences, we would expect clones with bacteria and

human inserts to occur much less frequently than human-human

chimeras and that the number of bacteria-human chimeras will be

almost solely based on the amount of bacterial DNA in the

samples. We would also anticipate that if 0.001% of bacterial reads

are found in bacteria-human chimeric clones then 0.001% of

human reads will be found in human-human chimeric clones and

be discordant in the human genome.

However, we find that the percentage of reads or read pairs

supporting integration relative to the number of human mate

pairs is higher than one would anticipate or has been measured

previously. The average percentage of bacteria-human mate pairs

compared to bacteria-bacteria mate pairs is ,6% (319 highly

curated bacteria-human clones/5,280 minimally curated bacte-

ria-bacteria clones), meaning 6% of the bacteria sequences are

attached to human sequences. If the bacteria-human sequences

were the result of artifactual chimeras, we would expect that 6%

of the human sequences should also be erroneously attached to

non-adjacent human sequences. This level of artifact chimerism

would undermine assembly as well as results regarding human

genome structural variation. To the contrary, one such structural

variation study found that ,1% of the mate pairs were

discordant with the reference human genome [39] using some

of the same genome sequencing data used here. While it would be

prudent to measure the human-human chimerism rates across all

the data to compare to the bacteria-human chimerism rates, the

lack of a strict ontology for the metadata precludes this.

Specifically, it is difficult to determine the exact nature of the

pertinent data needed (i.e. sequencing strategy and insert size) for

such an analysis.

Identifying LGT in next generation sequencing data
In order to extend this observation to next generation

sequencing data, we created a pipeline (Figure 2, Figure S1) to

identify Illumina paired end reads that consist of one bacterial

read and one human read in the 1000 genomes and TCGA

datasets. This is analogous to identifying bacteria-human mate

pairs with NUCMER above (Figure 1A, left side). The first round

of filtering uses BWA [40] to map the paired end reads to the

human reference and the completed bacterial genomes in the

RefSeq database. BWA was run with the default parameters such

that the number of differences is dependent on the read length;

for example a 50-bp read has 3 differences allowed [40]. BWA

was designed to align short query sequences against much longer

reference genomes with great efficiency. It was chosen as the

initial screen because it could efficiently process very large

datasets quickly. After BWA identified a small subset of the

paired end reads that support bacterial integration, BLASTN was

used to validate each read of the pair as specific for bacteria or

human using the larger NT database. Subsequently, a lowest

common ancestor (LCA) approach [41] was used to assign

operational taxonomic units (OTUs) to each read using either the

best BLASTN matches to NT or all of the results of BWA

searches against the completed bacterial genomes in RefSeq. As

expected, the level of taxonomic assignment possible was largely

dictated by the sequence variation in the reference sequences

used, as seen with a comparison of sequences with similarity to

the 16S rRNA gene and what is known about the variable and

conserved regions of that gene. (Figure S2). The results of BWA-

based and BLAST-based LCA assignment methods each have

their nuances but the results were very similar and parsimonious

with a phylogenetic analysis (Figure S3). Problems were identified

with using BLAST searches against NT due to eukaryotic whole

genome sequencing projects that likely contain contigs from the

microbiome (Figure S3). As such, the BWA-based LCAs are

presented here. Regardless, even when specific (e.g. strain level

assignments) OTUs should never be deemed definitive and

should merely be considered an approximation of the taxonomy

of the sequence. The blast-based assignments and subsequent

analysis is available in tables and in an interactive interface for

the 1000 genomes data (Table S3; http://lgt.igs.umaryland.edu/

1000genomes) and TCGA data (Table S4; http://lgt.igs.

umaryland.edu/tcga).

To calibrate our pipeline, we reconstructed the known HPV

integration in HeLa cells using available RNA-based Illumina

sequence data [42]. The HeLa cell line has a well-documented

integration of HPV into chromosome 8 as well as constitutive

expression of the viral oncogenes E6 and E7 [31,42–44].

Previously, PathSeq was used to identify 25,879 HPV reads in

the HeLa transcriptome (0.25% of the total reads analyzed) [42].

Using the same transcriptomics data, our pipeline identified a

similar number of 28,368 paired-end reads (0.55% of the total

read pairs) with both reads mapping to HPV. Furthermore, our

pipeline identified 6,333 reads (0.12% of the total read pairs)

supporting integration of HPV into the human genome. These

paired end reads span the viral integration site, with one read

mapping to HPV and the other read mapping to the human

genome (Figure 3). As expected, the reads supporting the HPV

integration into the human genome flanked the constitutively

expressed E6 and E7 viral oncogenes. The human portions of

these paired end reads reside in the known tandem HPV

integration site on chromosome 8 between 128,240,832–

128,241,553 bp [33,45,46].

LGT in the 1000 Genomes Project
Using this pipeline on 3.15 billion Illumina read pairs from the

1000 Genomes Project available as of February 2011, 7,191 read

pairs supported bacterial integration into the somatic human

genome after BLASTN validation, removal of PCR duplicates,

and a low complexity filter. The integrations have up to 56
coverage on the human genome. Of the 484 individuals examined,

153 individuals have evidence of LGT from bacteria with 1

individual having .1000 human-bacteria mate pairs and 22

individuals having .100 such pairs. On average, 47 human-

bacteria mate pairs were identified in these individuals with

putative somatic LGT (median = 2; maximum = 1360). These

putative somatic cell LGTs were identified in data from all five

centers that contributed data to this release.

Bacterial DNA Integration in the Human Genome
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Figure 2. Cloud-based method for identifying putative LGT reads. Sequencing files containing paired-end sequences were uploaded to a
CloVR virtual machine on the DIAG. Complete bacterial genomes from RefSeq and the human genome reference hg19 were downloaded from a
persistent data node in the DIAG. The sequencing queries were mapped to the two references using BWA. The mappings were processed using
LGTSeek, which classifies reads based on their mapping profiles. All mappings except for human/human were downloaded to local storage at the
completion of the analysis. Next, putative LGT reads were run through automated curation steps including a BLAST search against NT and PrinSEQ
dereplication to remove PCR duplicates and low complexity filtering (Figure S1). These filtered reads were then loaded into a database and inspected
manually through a custom graphical interface.
doi:10.1371/journal.pcbi.1003107.g002

Bacterial DNA Integration in the Human Genome
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Bradyrhizobium was the most common OTU identified in the

reads supporting LGT, with Bradyrhizobium sp. BTAi1 being the

most common strain-level OTU. The Bradyrhizobium-like reads

were distributed across an entire reference Bradyrhizobium genome

(Figure S4A) similar to what was observed for Lactobacillus

sequences in the Trace Archive data (Figure 1B). BTAi1 is a

strain that is unusual in its ability to fix nitrogen and carry out

photosynthesis. Therefore, some may consider the presence of

BTAi1-like sequences in humans unusual. However, our under-

standing of what bacteria exist in the body is limited. Most of the

samples containing Bradyrhizobium-like reads were from the Han

Chinese South (CHS) population and were sequenced by the

Beijing Genomics Institute (BGI). OTUs associated with bacterial

integration that were detected in only one center may be viewed

suspiciously, and several, including this one, were observed.

However, population level differences in the diet, life style, and

microbiome of the different populations examined could also lead

to this result. The CHS study is an example of the difficulties in

ascertaining the source of the material sequenced. The study

information in the SRA states that lymphoblastoid cell lines were

used (SRP001293; http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.

cgi?study = SRP001293), but the sample information states that

blood was used (http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.

cgi?view = samples).

Two OTUs—Propionibacter acnes and Enterobacteriaceae—were

detected in samples from all five centers. P. acnes is a common

skin bacteria that is associated with acne. It is thought to

contaminate genomic DNA preparations either from laboratory

workers or during sample collection. Whether bacterial DNA

arises from contaminants or the microbiome, laboratory artifact

chimeras in Illumina whole genome shotgun sequencing that

resemble bacterial integrations can occur (a) during PCR

amplification steps in library construction or (b) from over-

clustering on the flow cell [47]. The other OTU found across all

five centers is a family level assignment of Enterobacteriaceae,

which includes Escherichia coli. While next generation sequencing

no longer relies on plasmid-based clones, they do use ligation

steps and recombinant enzymes isolated from E. coli. Therefore, it

is quite possible that low levels of E. coli DNA could be introduced

with the enzyme preparations. Because both E. coli and P. acnes

DNA in samples could arise from contamination of the samples,

out of an abundance of caution they were excluded from all

analyses. However, we note that this may be a conservative

approach given that other Enterobacteriaceae may be found in

the samples besides E. coli and both E. coli and P. acnes could

contribute to bacterial integration.

Distinguishing bacterial integrations from laboratory
artifacts

Given that the putative LGTs detected are likely some

combination of real LGT and laboratory-based artifacts of reads

from the microbiome, we sought to establish a metric by which the

two could be differentiated. Given the short length of these reads,

our analysis of next generation sequencing data focused solely on

Illumina paired end data, identifying putative bacterial integra-

tions when one read mapped to human and one to bacteria. Due

to the length of the reads, chimeric reads could not be identified

with BWA (e.g. a 50-bp read that had 25-bp mapping to a bacteria

and 25-bp mapping to human could not be identified with BWA

because it would remain unmapped). Given the sole use of paired

end data, reads from the microbiome were defined as those where

both reads only map to a bacterial genome. This is, however, an

oversimplification since any integration of bacterial DNA larger

than the library insert size is likely to generate such reads.

Regardless, the microbes that contribute to putative LGT are just

a subset of the microbes present (Figure S5). If junctions of

bacteria-human read pairs are merely artifacts, one would

anticipate that they form in the same proportion relative to the

contaminating DNA. However, this was not observed (Figure S5).

Each OTU could be binned into one of two categories based on

the difference between the composition of the microbiome and the

LGT reads: (A) one where the contribution of the specific bacteria

relative to the total population of bacteria is higher in the reads

supporting LGT and (B) one where the contribution of the specific

bacteria relative to the total population is higher in the reads

coming from the microbiome. One would anticipate that the

former would contain bacteria participating in real LGT, since the

proportion of reads with putative LGT is higher while the latter

would represent the level of artifactual chimeras from contami-

nating DNA. This cannot be examined on a per sample basis since

most samples have a limited amount of bacterial DNA. However,

when the data is aggregated across the entire project (Figure 4A),

the bacteria do in fact fall into either of these two categories. As

expected, bacteria in the families of Propionibacterineae and

Enterobacteriaceae fall into category B, along with Xanthomona-

daceae. In contrast, Bradyrhizobiaceae falls into category A.

In a preliminary analysis, the phage l was observed to fit into

category A. In the above analysis, it is not observed because l, a

bacteriophage, has similarity to sequences with an NCBI

taxonomy of ‘‘cloning’’ and ‘‘expression vector’’ that are excluded

with our final criteria. However, if we specifically include the l

Figure 3. Identification of HPV Integration into the HeLA
genome. As a control, integrations of the human papillomavirus
genome NC_001357 (red) into the HeLa cell genome represented by
hg19 (blue) were detected with our pipeline. The integration of HPV
into chromosome 8 in the HeLa genome is supported by read pairs with
one read mapping to HPV and the other mapping to the human
genome (purple lines). The log-transformed coverage of the reads
supporting integration (purple histogram, axis minimum = 0, axis
maximum = 4) is consistent with the known integration of the HPV E6
and E7 genes shown in pink on the HPV genome. The log-transformed
coverage of the viral mate pairs is also shown (red histogram).
doi:10.1371/journal.pcbi.1003107.g003

Bacterial DNA Integration in the Human Genome
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reads, l falls within category A (Figure 4B). The reads map only to

a small portion of the l phage, specifically ranging in coverage

from 506–2506on both sides of a HindIII site. It is possible that

this is a contaminant as l is commonly used in research labs. For

instance, an excised gel slice may have been contaminated with a l
fragment from an adjacent lane containing a l ladder. However,

this is not consistent with having reads on both sides of the same

HindIII site. If the slice was contaminated with two ladder

fragments, we would anticipate equal numbers of reads at two

additional sites reflecting both ends of the fragment, which was not

observed. We could not reconstruct, with in silico digestions of

common and uncommon restriction endonucleases, a scenario

that explains our observation and reflects what is known about

laboratory artifacts in genome sequence data. Should this

integration of l in the human genome be validated, it is intriguing

since a phiC31 integrase-containing plasmid has already been

shown to integrate into human cells in vitro [27] at a pseudo-attP

site. If prophage can integrate naturally into the human genome,

they may also be capable of producing virions that would serve as

an immune defense against certain bacteria.

Rate of integration of bacterial DNA in the human
genome

To further explore the relationship between bacterial integra-

tions and laboratory artifacts, we sought to establish the mutation

rate across each dataset as well as within subsets. The Trace

Archive and 1000 Genomes data are derived from terminally

differentiated blood samples, where integrations are expected to

occur in a single generation. In the Trace Archive data [7,45,48] a

total of 680 traces contain significant non-overlapping similarity to

both bacteria and human sequences and 319 clones contain both

bacteria and human sequences (Tables S1 and S2). From this data,

an integration rate was measured as 680 integrations in

113,046,604 reads per a single generation, or 6.0261026

integrations/generation. While this may be considered an

overestimate due to known laboratory artifact chimeras that result

from cloning, it may also be an under-estimate as reads deposited

in the Trace Archive are often cleansed of reads believed, but not

proven, to be from bacterial contaminants. In the Illumina reads

from the 1000 Genomes Project [49], 7,191 read pairs supporting

integration were detected in 3,153,669,437 paired reads se-

quenced yielding a remarkably similar mutation rate of

2.2861026 integrations/generation assuming the mutations hap-

pen in a single generation.

This mutation rate would reflect both integrations as well as the

formation of laboratory artifactual chimeras. To establish the

contribution of the laboratory artifacts, we examined putative

integrations involving OTUs of Propionibacterium. If reads with this

OTU arose from contamination, then any bacteria-human read

pairs would arise from laboratory artifacts. Of the 845,260,743

read pairs in runs containing putative integrations and/or reads

attributed to the microbiome with a Propionibacterium-level OTUs,

191 read pairs represented putative integrations, yielding a

mutation rate of 2.2661027, or 10-fold lower than that for the

entire dataset. A similar analysis of l, which may represent true

integrations for the reasons outlined above, reveals 554 reads

supporting integration out of 404,243,537 read pairs, or a

mutation rate of 1.3761026, which is 6-fold higher than the

Propioinibacterium rate.

Coverage lends support for integrations
Coverage across a bacterial integration would provide greater

evidence of its validity and would be observed when more than 1

unique read is present at a single site. Uniqueness of the reads was

assessed with PRINSEQ after concatenating the two reads

together and identifying if they are identical. Such identity of

Figure 4. Relative proportion of OTUs in the microbiome compared to the proportion in bacterial DNA integration. The relative
contribution of an OTU at the family level is shown (Panel A) for the microbiome (blue) and bacterial integrations (purple). OTUs that are over-
represented in the microbiome include several common lab contaminants that were observed at low levels across multiple samples and centers (e.g.
P. acnes). OTUs that are over-represented in the bacterial integrations are more likely to be the organisms mutagenizing the human somatic genome.
The contribution of l phage microbiome (blue) and integrations (red) was measured and illustrated separately (Panel B).
doi:10.1371/journal.pcbi.1003107.g004
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both sequence and insert size suggests that the pair are either PCR

or optical duplicates formed during library construction or

sequencing, respectively, and that should be counted only once.

If coverage of unique read pairs supporting LGT across the

human genome can be observed, it may suggest clonal expansion

of a population with the LGT and support that they were formed

biologically in vivo rather than through laboratory-based artifact

formation in vitro. When the analysis is limited to putative LGT

with .16 coverage on the human genome, only 275 read pairs

support somatic cell LGT. The most predominant bacterial

species level OTU, with 100 read pairs, is Stenotrophomonas

maltophilia, an emerging opportunistic pathogen of the respiratory

and blood systems of immunocompromised individuals [50]. The

Stenotrophomonas-like reads were evenly distributed across the

bacterial genomes (Figure S4B). Reads supporting S. maltophilia-

like LGT were detected in two individuals in the study of Utah

residents with Northern and Western European ancestry (CEU)

sequenced at the Max Planck Institute of Molecular Genetics

(MPIMG). One individual had the majority with 97 of these read

pairs. While read pairs with .16 coverage were only detected in

two samples from one site, when the coverage limit was relaxed,

450 read pairs with a S. maltophilia level OTU were detected in

both the CEU and CHS studies and from both MPIMG and BGI.

While compelling, given the low coverage, the data from the

1000 Genomes Project is inconclusive in the absence of

experimental validation. Yet, in terminally differentiated cells, like

blood cells that are routinely sequenced, somatic cell LGT cannot

be validated because the transfer sequenced was destroyed in the

process of sequencing and is likely the only copy that exists.

Transfers could occur in progenitor cells but as they are typically

well protected, it is less likely. Furthermore, extensive coverage is

not expected for the same reason. In several cases, we could

identify coverage that further supports the validity of these reads

but these instances were quite limited. In addition, much of the

1000 Genomes data examined are from the first pilot study that

only generated 0.5–46 coverage of the genomes. Lastly, much of

the DNA for the 1000 Genomes Project is derived from cell

culture, not directly from blood cells. There is an opportunity for

LGT to happen in cell culture that would not necessarily be

biologically relevant. Therefore, we sought to validate these results

further by examining data from cancer samples in TCGA.

Analysis of TCGA data
From 7.05 trillion bases of Illumina paired-end sequencing data

in TCGA, 691,561 read pairs support bacterial integration into

the somatic human genome (Table 1). The integrations into the

human genome have .1006 sequencing coverage (Figure S6).

TCGA contains sequencing data of tumor samples as well as

normal tissue. Strikingly, while only 63.5% of TCGA samples

Figure 5. Distribution of reads supporting bacterial DNA
integration into normal and cancer genomes. The percentage
of samples is shown that contain a given number of paired reads that
support integration of bacterial DNA in the tumor genomes (pink) and
in the normal matched genomes (green).
doi:10.1371/journal.pcbi.1003107.g005

Table 1. Summary of TCGA data analyzed by tumor type.

Cancer
Samples
- C{

Samples
-N{

Int.
Reads
- C{

Int.
Reads
- N{

Bac.
Reads - C{

Bac.
Reads
- N{ Tot. Pairs - C{ Tot. Pairs - N{

Int. Freq
- C{

Int. Freq.
- N{ C/N`

LAML* 130 0 665,676 ND* 29,633,118 ND 7,955,502,437 ND 8.461025 ND 672

BRCA* 94 5 9,732 39 995,284 4,715 6,093,925,360 313,199,763 1.661026 1.261027 12.8

GBM* 69 70 118 122 11,857 11,357 5,391,069,119 5,295,464,216 2.261028 2.361028 1.0

KIRC* 79 0 1,906 ND 364,608 ND 5,070,366,679 ND 3.861027 ND 3.0

KIRP* 9 0 175 ND 53,147 ND 541,775,677 ND 3.261027 ND 2.6

LUSC* 20 0 995 ND 109,019 ND 1,166,304,426 ND 8.561027 ND 6.9

LUAD* 14 0 191 ND 30,825 ND 980,790,987 ND 1.961027 ND 1.6

LIHC* 0 1 ND 20 ND 6540 ND 66,799,150 ND 3.061027 ND

OV* 146 144 722 852 13,161 25,087 8,643,898,191 7,716,679,202 8.461028 1.161027 0.8

STAD* 71 0 11,013 ND 4,860,934 ND 6,689,562,270 ND 1.661026 ND 13.2

TOTAL 632 220 690,528 1,033 36,071,953 47,699 42,533,195,146 13,392,142,331 1.661025 7.761028 210

*LAML: Acute myeloid leukemia; BRCA: Breast invasive cancer; GBM: Glioblastoma multiforme; KIRC: Kidney renal clear cell carcinoma; KIRP: Kidney renal papillary cell
carcinoma; LUSC: Lung squamous cell carcinoma; LUAD: Lung adenocarcinoma; LIHC: Liver hepatocellular carcinoma; OV: Ovarian serous cystadenocarcinoma; STAD:
Stomach adenocarcinoma; ND = Not determined.
{Samples – C: Cancer samples; Samples – N: Normal samples; Int. Reads – C: Reads supporting integration from cancer samples; Int. Reads – N: Reads supporting
integration from normal samples; Bac. Reads – N: Read pairs mapping to bacteria in cancer samples; Bac Reads – N: Read pairs mapping to bacteria in normal samples;
Tot. Pairs – C: Total read pairs in cancer samples; Tot. Pairs – N: Total read pairs in normal samples; Int. Freq – C: Integration frequency in cancer samples; Int. Freq. – N:
Integration frequency in normal samples.
`C/B is the integration rate in cancer samples divided by the integration rate in normal samples. When a normal was not available (LAML, KIRC, KIRP, LUSC, LUAD, STAD)
the value from BRCA was used. BRCA was chosen because it is RNA sequencing as are the samples being examined that lack normal samples.
doi:10.1371/journal.pcbi.1003107.t001
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analyzed were from tumors, the tumor samples contained 99.9%

of reads supporting bacterial integration. Furthermore, while the

majority of normal samples had no read pairs supporting

integrations, the majority of tumor samples had .10 reads

supporting integrations (Figure 5). However, these numbers may

be biased by what was sequenced in each category (Table 1). For

example, the two cases with extensive LGT lack matched normal

samples and were both RNA-Seq studies.

Acute myeloid leukemia
Acute myeloid leukemia (LAML) was identified as the cancer

type with the highest number of reads supporting integrations.

This blood-derived cancer had 665,676 read pairs supporting

putative integrations. Unfortunately, no normal samples were

available in this data release for comparison. After identifying

reads supporting bacterial integrations, we increased our strin-

gency by requiring integrations to be supported by .46 unique

coverage on the human genome. Implementing this criterion

reduced the number of putative integrations to 90,726 paired end

reads. When a genus level bacterial OTU could be identified, it

was most frequently Acinetobacter with 31% of the reads (Figure

S7). Moraxellaceae was the largest family level OTU (36%),

which includes Acinetobacter. As with the 1000 Genomes data, a

broader diversity of OTUs are observed in the microbiome reads

than in the reads supporting LGT. The samples can be binned

into one of five categories based on the microbiome (Figure S7C).

Intriguingly, one of those categories lacks bacterial integration

(Figure S7D, blue) and another has an extensive diversity of

bacterial integrations across many OTUs (Figure S7D, dark

green).

Of the 90,726 reads supporting bacterial integrations into the

human genome, 57,826 of those reads can map to the Acinetobacter

baumannii genome (NC_010611) (Figure 6). Within the Acinetobacter

baumannii genome, reads were frequently detected in the rRNA

operon (57,487 reads in 5,279 bp) (Figure 6). Across the entire

dataset, integration of rRNA was observed most frequently. For

example, 68% of the reads attributed to the microbiome in LAML

samples were from bacterial rRNA and 32% were from bacterial

coding sequences (CDSs) (Table 2). Yet, 99% of the bacterial reads

in LAML read pairs supporting bacterial integration were from

rRNA and only 1% were from CDSs (Table 2).

In LAML, not only was there a preference for what bacterial

DNA was integrated but also for the location of integration.

Reads supporting bacterial DNA integration were detected

more frequently in the human mitochondrial genome

(Figure 6A, 41,852 reads in 16.6 kbp) than in the human

nuclear genome (48,874 reads in 2.86 Gbp; p,2610216, Chi-

squared test). The reads supporting integration were uniformly

distributed across the entire mitochondrial genome with

10,085 unique read start sites (p = 0.27, thus rejecting the

hypothesis that they are not random, Kolmogorov-Smirnov

test, Figure 6BC). This is important because one might

Figure 6. Acinetobacter-like integrations into the genome of acute myeloid leukemia samples. While putative integrations (purple lines) of
Acinetobacter-like DNA (NC_010611.1) could be found in the nuclear genome, they were more abundant in the mitochondrial genome (Panel A, not
drawn to scale). The integrations into the human mitochondria genome (blue) from an Acinetobacter spp. OTU in acute myeloid leukemia are
mapped to the Acinetobacter genome (Panel B, red) or just the Acinetobacter rRNA (Panel C, red). The putative integrations into the mitochondria
genome are randomly distributed across the entire genome while the bacterial sequences are mostly limited to sequences from the rRNA operon.
The read coverage supporting integration is plotted on an ln-transformed scale (purple, axis minimum = 0, axis maximum = 5). The locations of the
rRNA operons are denoted with green ticks on the outside rims of Panel A and B. Only integrations with an average of .46coverage on the human
genome are shown, and the data was down-sampled according to the methods.
doi:10.1371/journal.pcbi.1003107.g006

Table 2. Genomic features from which LGT originates.

Feature LAML microbiome LAML LGT

CDS 9,409,443 32% 749 0.87%

Gene 42 ,0.01% 0 0%

Mature peptide 418 ,0.01% 0 0%

Miscellaneous RNA 18,766 0.06% 0 0%

Noncoding RNA 2,797 0.01% 7 0.01%

Miscellaneous feature 20 ,0.01% 0 0%

rRNA 19,843,921 68% 85,471 99%

Signal peptide 4,058 0.01% 1 ,0.01%

tmRNA 0 0% 0 0%

tRNA 23,489 0.08% 57 0.07%

Sum 29,302,954 1 86285 1

doi:10.1371/journal.pcbi.1003107.t002

Bacterial DNA Integration in the Human Genome

PLOS Computational Biology | www.ploscompbiol.org 9 June 2013 | Volume 9 | Issue 6 | e1003107



anticipate that bacterial rRNA preferentially integrates into

the mitochondrial rRNA, but this was not observed. This also

cannot be attributed to similarity between the Acinetobacter

rRNA and the mitochondrial rRNA. There was no similarity

detected between Acinetobacter rRNA and the human mito-

chondrial rRNA, or any other human sequence, as assessed by

a BLASTN search of human genomic and transcriptomic

sequences in NT with the Acinetobacter rRNA (data not

shown). There also was no correlation observed between the

amount of mitochondrial sequence in the sample and the

number of integrants detected (Spearman rank coefficient

p = 0.0681).

Stomach adenocarcinoma
The stomach adenocarcinoma (STAD) cancer type had the

second highest number of reads supporting bacterial integrations

at 11,013. In the analysis of HBV integrations in human liver

tumors, a criterion of a cluster of two read pairs was successfully

applied to identify viral integrations in whole genome sequencing

data with a validation success rate of 82% [6]. When a similar

threshold requiring .16 coverage across the read (meaning at

least two unique read pairs support the integration), the read count

was still highest in LAML, followed by STAD, breast invasive

cancer, and ovarian serous cancer. If the stringency is further

increased, STAD samples contained 223 paired end reads with

Figure 7. Distribution of bacterial OTUs from the microbiome and bacterial DNA integrations in stomach adenocarcinoma. The
proportion of reads from each bacterial OTU is illustrated from the microbiome (Panel A) and LGT (Panel B) across all the stomach adenocarcinomas
samples analyzed. The log-transformed proportion of the top bacterial OTUs per sample for the microbiome (Panel C) and LGT with .46 average
coverage (Panel D) are clustered based on the microbiome profiles in Panel C and illustrated using heat maps. The relative proportion of taxonomic
units related to Pseudomonas in the integrations was higher (as represented by red/hot pink) than in the microbiome (as represented by blue/purple).
doi:10.1371/journal.pcbi.1003107.g007
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.46 coverage along the corresponding portion of the human

genome. This high level of coverage lends great support for

bacterial DNA integration. Unfortunately, STAD does not have

normal matched samples for comparison in this data release.

The most common OTU (32%) for the bacterial integrations in

STAD arose from the Pseudomonas spp. and related taxonomic

units (Figure 7B). Approximately 6% of all reads supporting

integration were more specifically assigned to the bacterial OTU

Pseudomonas fluorescens. Of the 223 reads identified as bacterial

integrations with .46coverage on the human genome, 188 could

be mapped to P. fluorescens (NC_012660). Of those, 184 mapped

(98%) to the P. fluorescens rRNA operon (Figure S8) and only 4

integrations mapped to protein coding regions. P. aeruginosa has

previously been shown to have a promoting effect on gastric

tumorigenesis in rats receiving an alkylating agent [51]. Putative

integration of DNA most likely of Pseudomonas origin has also been

observed in the CBMI-Ral-Sto cell line in a study of NotI sites

[52]; those Pseudomonas-like sequences have similarity to the ones

we describe here (Figure S3J).

While Helicobacter pylori has been associated with the develop-

ment of stomach cancer [53] only 2 Helicobacteraceae reads were

identified supporting bacterial DNA integration, across all of the

samples, and only 221 reads pairs with a Helicobacteraceae OTU

were identified from the microbiome despite the presence of 15

Helicobacter pylori genomes in our reference dataset.

A clustering analysis of the microbiome reads separates the

STAD tumor microbiome profiles into two clusters (Figure 7C).

The tumors without integrations have a profile that is predom-

Figure 8. Integration sites of bacterial DNA in stomach adenocarcinomas. The read pairs supporting integration of DNA from a
Pseudomonas OTU are illustrated between Pseudomonas rRNA operon (red) and the relevant portions of four human genes (blue) are shown for
TMSB10 (Panel A), CEACAM6(Panel B), CEACAM5 (Panel C), and CD74 (Panel D). The human gene model with introns, exons, and untranslated regions
(UTRs) are shown with the UTR highlighted in yellow. Putative integrations were frequently located near the 59-UTR. Reads are color-coded by sample
with multiple reads supporting each of these integrations and with some integration sites present in multiple individuals. Individuals are color-coded
in the same manner in Figure 9. While the entire bacterial rRNA operon is shown, this is only for representative purposes. The transfer would include
only a small portion that is relative to the library insert size, which is usually 300–400 bp for Illumina paired end data.
doi:10.1371/journal.pcbi.1003107.g008
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inantly Enterobacteriaceae. However, the tumor samples with

integrations have a distinct cluster of their own (Figure 7D) in

which Pseudomonadaceae is the dominant OTU with a low

proportion of Enterobacteriaceae. Although only one source site

contributed to the sequencing of tumors with integrations, that

same center also contributed samples of the other cluster.

Furthermore, not all samples with a microbiome that is

predominantly composed of members of the Pseudomonadaceae

family had evidence of bacterial integration.

Most of these paired end reads supporting bacterial integration

in the human genome were in five nuclear human genes

(Figure 8A): TMSB10, IGKV4-1, CEACAM5, CEACAM6, and

CD74. Four of these five integrations into STAD are in genes

known to be up-regulated in gastric cancer, specifically CEA-

CAM5, CEACAM6, TMSB, and CD74 [54–57]. An expression

analysis reveals that genes with bacterial integration were all up-

regulated relative to the average transcript level (Figure 9).

Integration in genes up-regulated in stomach cancer (as opposed

to those where transcription is down-regulated or abolished) is

parsimonious with detecting integrations in tumor RNA, as we are

unlikely to identify integrations that abolish transcription or

transcript stability.

Discussion

Integration of bacterial DNA in the human somatic
genome

Through this extensive analysis of several large human

genome sequencing projects, we present evidence supporting

LGT from bacteria to the human somatic genome. In

terminally differentiated cells, we expect and observe that

putative LGTs are detected consistently at low levels.

Examination of clonally expanding tumors reveals many more

transfers, as we would expect from a rapidly expanding

population of cells. In all of the cases examined, the

composition of the microbiome across the samples is different

from the composition of bacterial DNA integrated into the

human genome. When only the regions on the human genome

with .46 coverage are examined, a pattern emerges of

integration in the mitochondria for LAML and five genes in

STAD. Remarkably, in STAD, four of those five genes have

previously been shown to be implicated in cancer [54–57].

Together we believe this presents a compelling case that LGT

occurs in the human somatic genome and that it could have an

important role in human diseases associated with mutation.

While it is possible that these LGT mutations may play a role in

carcinogenesis, it is also necessary to consider that they could

simply be passenger mutations. The rapidly proliferating tumor

cells may be more permissive to LGT from bacteria due to

mutations in tumor suppressor genes or down regulation of DNA

repair pathways. As a result of clonal expansion, rare mutations

may be amplified throughout the tumor. Based on our analysis, it

is impossible to determine if the LGTs have a causal role in

cancer, or are simply a byproduct of carcinogenesis.

Likewise, while it is possible that the bacteria are causing

mutations that benefit the bacteria, it is equally plausible that this

occurs by random chance, or some combination of the two. If the

mutations occur by random chance, mutations that induce

carcinogenesis will be selected for over time within a local

population of cells. This may explain why we observe low levels of

LGT across the entire genome with increased coverage in specific

genes in the STAD and LAML samples. In contrast, mutations

that would benefit the bacteria would include those that create a

micro-environment that promotes bacterial growth. This may

explain why similar mutations, both in location and bacterial

integrant, are observed in multiple individuals (Figure 8).

Laboratory artifacts
While the extensive coverage across these putative integrations

in multiple samples is strong support for bacterial integration being

present in human tumors, we recognize the concern that such

bacterial/human read pairs may arise merely from chimeric DNA

generated during library construction. We pursued obtaining

specimens for validation or establishing collaborations to accom-

plish this validation with TCGA investigators. Unfortunately, the

combination of patient consent and access policy precludes the

possibility of experimental validation on these samples by

researchers that lack an IRB tied to a grant award from NCI/

TCGA. As our funding is from the NIH New Innovator Program

this was not possible. Collaborating with current TCGA investi-

gators was also pursued but was found to be explicitly forbidden.

However, we anticipate the future successful validation of these

results by researchers with access to samples and the proper

authorization.

However, further analyses suggest that these are not laboratory

artifacts. If chimeras arise in library construction, they should

increase as the prevalence of bacterial DNA/RNA increases.

Therefore, we evaluated the possibility of a correlation between

the number of read pairs arising from the Pseudomonas-like DNA

and putative LGT read pairs for these six STAD samples. The

Spearman-rank correlation between these values was not signif-

icantly different from zero (P = 0.19), indicating no correlation

between the abundance of reads from the bacteria genome and

Figure 9. Differential expression analysis of transcripts asso-
ciated with bacterial integrations in stomach adenocarcino-
mas. The log2(ratio) of the transcript abundance is illustrated for the
ratio of the RPKM for the sample compared to the average RPKM across
of the samples. Expression data for transcripts which have bacterial
integrations are boxed in yellow. All of the transcripts with bacterial
integrations are up-regulated relative to those that do not have such
integrations. Individuals are color coded in the same manner as in
Figure 8.
doi:10.1371/journal.pcbi.1003107.g009
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reads supporting integration of Pseudomonas-like DNA in the

human genome for these six samples. Overall, no relationship was

observed between bacterial integrations and (a) the microbiome

composition, (b) human transcript abundance, or (c) mitochondrial

transcript abundance.

Yet, to further examine laboratory artifact chimerism in

these samples, the distribution of the insert sizes for paired

reads was compared between representative LAML samples,

STAD samples, and Neisseria meningitidis whole genome

sequencing project samples (Figure S9). The mappings with

N. meningitidis were used to establish that ,0.22–0.29% of

reads were outside this distribution when the reads were

mapped to the assembled genome for that exact strain. For

comparison, 0.94–1.12% of reads were outside this distribution

when reads mapped to a divergent genome from the same

species (Table S5). The same percentage values for paired

reads only mapping to bacteria in the STAD samples ranged

from 0.06–0.60% while those for LAML ranged from 0.65–

0.87% (Table S5). Given that the database we searched against

was limited to only those with complete genomes, it is highly

unlikely that the bacterial DNA sequenced through the TCGA

is from the same strain that has a genome deposited in RefSeq.

Therefore, we anticipate values should lie between 0.22–1.12%

as is seen in the N. meningitidis controls. We observed that

bacterial read pairs in the TCGA data fell outside the

distribution less frequently (0.06%–0.60%). While this per-

centage is used as a proxy for laboratory artifactual chimerism,

bacterial genomes are known to be fluid with genome

rearrangements happening in single growths that would result

in the same outcome. When these results are taken together,

there is no indication that there is a higher level of chimerism

in the bacterial DNA of TCGA samples than is normally

observed. Furthermore, this level of chimerism would not

explain 46 or 1506 coverage across the bacterial integrations

that are discussed here considering that PCR duplicates were

removed. Of note, high coverage chimerism in bacterial

samples would lead to an inability to properly assemble the

corresponding genomes, which is not observed in microbial

genome sequencing projects.

We note, however, that laboratory artifact chimeras could be

detected in TCGA samples with whole genome amplification. As

such these samples were eliminated from further analysis beyond

what is presented in Table 1. In ovarian cancer, numerous read

pairs that would normally support integrations were detected in

both tumor and normal samples (Table 1). Upon further

examination, all of the putative integrations involved E. coli

DNA and are likely chimeras formed during the whole genome

amplification used for these samples and that formed between

human genomic DNA and small pieces of E. coli DNA introduced

with recombinant enzymes.

Further support that the putative integrations in LAML and

STAD samples are not laboratory artifacts comes from the fact

that reads supporting integrations were detected 6726 and

13.26 more frequently, respectively, in these cancer samples

than in representative non-cancer samples (Table 1). This is

expected if such mutations were part of the clonally expanding

tumor. Across all samples, there are 1,033 reads supporting

integrations in the normal samples with 13,392,142,331 read

pairs sequenced, yielding an estimated integration frequency of

7.761028. In contrast, 690,528 read pairs support integrations

in tumor samples out of 42,533,195,146 paired reads

sequenced, yielding an integration frequency of 1.661025, or

2106 higher. Even when compared to the highest integration

rate assessed in normal samples, which was 6.0261026 in the

Trace Archive data, the aggregate rate across all cancer

samples is still .2.5-fold higher.

While the integration rate in cancers is 2106higher than that in

normal samples across the TCGA, this comparison is not directly

between matched tumor and normal pairs since normal samples

were only present for OV, GBM, and BRCA. However, many

different types of normal samples can be used in cancer studies and

therefore other comparisons besides matched pairs are quite valid.

In fact, no one type of normal sample may be perfect for all

experiments. For example, a small piece of adjacent breast tissue

determined to be non-cancerous by a pathologist would be

considered the normal specimen for breast cancer [58]. These

samples are often taken from the margins of tumors when they are

resected during surgery. In that case, it’s possible they could have

cancer characteristics not evident by histology [59,60]. In OV,

blood-derived samples were collected as normal samples from

some patients, while others had normal tissue collected. In GBM,

only blood-derived samples were collected as normal samples. In

other cancer studies, skin tissue from patients prior to treatment

may be used [61]. Some blood cancers lack a normal sample

because the cancer originates in the bone marrow. Therefore, all

of the patient’s blood contains cancerous cells [62]. In this instance

either blood from healthy individuals [63] or blood taken from the

patient once in complete remission [64] may be used as a normal

sample.

Unfortunately, the STAD and LAML samples of greatest

interest here for driving the dramatically increased integration

rate in the tumor samples also lack normal matched samples in

this data release. Given the lack of normal matched samples, and

that blood samples from healthy individuals are frequently used

as normal samples for studying types of leukemia [63], it is

informative to compare LAML to normal samples from OV,

GBM, and BRCA or 1000 Genomes data. Of note, the normal

samples for OV, GBM, and BRCA have integration rates of

1.161027, 2.361028, and 1.261027 (Table 1) respectively, while

the integration rate of samples from the 1000 Genomes project

was 2.361026. Of these, the BRCA mutation rate is most

relevant to STAD and LAML as all three are RNA-based

sequencing. Comparing these, LAML samples have an integra-

tion rate 6726 higher than the integration rate for the BRCA

normal samples (Table 1). Even if the LAML cancer samples are

compared to the normal samples with the highest integration

rate, those in the Trace Archive, the integration rate for LAML is

still almost 146higher. While the overall integration frequency of

cancer samples is 1.661025, or 2106 higher than the normal

integration rate of 7.761028 (Table 1), the LAML integration

rate is the main driver of the increased frequency. Most tumor

types do not have an increased integration rate relative to normal

samples (Table 1).

Another main contributor to the significant increase of

integrations in cancer samples is STAD, which has an

integration rate of 1.661026 and is 13.26 higher than the

integration rate for the BRCA normal samples (Table 1).

Considering STAD is in close proximity to the microbiome,

normal stomach tissue would better reflect this exposure to the

microbiome, including an increased likelihood of bacterial

integration. That means it would be particularly informative if

available. Unfortunately, this release of the TCGA lacks STAD

normal samples or any other normal samples with constant

exposure to the microbiome. This prevents us from determin-

ing the rate of integration in non-cancer cells with an abundant

microbiome. Further work is needed to resolve differences in

the integration rate between normal samples that have

constant contact with the microbiome and those that do not.

Bacterial DNA Integration in the Human Genome
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Bacterial integration of Acinetobacter-like DNA in
mitochondrial genomes

The majority of the bacterial integrations detected were

between an Acinetobacter-like organism and the mitochondrial

genome. Acinetobacter spp. are known to invade epithelial cells

and induce caspase-dependent and caspase-independent apoptosis

[65]. Uptake of apoptotic bodies and caspase-dependant DNA

fragmentation is known to facilitate LGT between mammalian

cells [66], including LGT of oncogenes [67].

While we present this as bacterial integration into the

mitochondrial genome, it is possible that mitochondrial DNA is

integrating into an Acinetobacter-like genome. However, despite the

numerous complete Acinetobacter genomes sequenced, mitochon-

drial DNA has not been detected in the genome of an Acinetobacter

isolate.

Human mitochondria have an essential role in many key

cellular processes such as the generation of cellular energy,

production of reactive oxygen species, and initiation of apoptosis.

The accumulation of somatic mutations in the mitochondrial

genome has been implicated in carcinogenesis [68]. For instance,

mutations in the mitochondrial cytochrome oxidase subunit I

(COI) gene contribute to the tumorigenicity of prostate cancer

through an increased production of reactive oxygen species [69].

The LGT from bacteria, such as Acinetobacter, to the mitochondria

may be generating novel mutations in the mitochondrial genome

and therefore influencing tumor progression.

Bacterial integration in proto-oncogenes in stomach
adenocarcinomas

The integrations we identified in STAD frequently appear to be

in, or near, the untranslated region (UTR) of known proto-

oncogenes. In this case, these proto-oncogenes are genes known to

be up-regulated in cancers. Despite occurring in or near UTRs,

this does not reflect similarity in these sequences. The mappings

are specific as observed by both the BWA matches and BLAST

searches against NT. While CEACAM5 and CEACAM6 are

paralogs, they are sufficiently diverged to be resolved. We

postulate that these putative integrations have mutated a repressor

binding site and have induced over-expression leading to

carcinogenesis. While this is a tempting speculation, it needs to

be experimentally verified.

In chromosome 2, one STAD sample had an integration site in

the second exon of thymosin b10 (TMSB10; Figure 8A) while

another integration site was found in IGKV4-1. The TMSB10

gene has been shown by SAGE to be up-regulated in gastric

tumors and confirmed with Northern blots [54].

On chromosome 19, integrations were identified in CEACAM5

and CEACAM6 of STAD tumors (Figure 8BC). The same

integration site in CEACAM5 was detected in two separate

samples while a third sample had a similar integration in

CEACAM6. CEACAM proteins were initially identified as

prominent tumor-associated antigens in human colon cancer

[55]. Approximately 50% of human tumors show over-expression

of CEA family proteins [56]. CEACAM5 and CEACAM6

mediate cell adhesion by binding to themselves and other

CEACAM family members [55]. Over-expression disturbs

ordered tissue formation in 3D tissue culture and leads to

increased tumor formation in mice [55].

On chromosome 5, integration sites were identified in STAD

tumors in different portions of CD74 with three samples having an

integration in the 59-end of the gene and one of those samples

having a second integration in the 39-UTR of CD74 (Figure 8D).

CD74 initiates antigen presentation as well as signaling cascades

that result in cell survival. Therefore it is not surprising that while

its regulation is tightly controlled in normal tissues, it has increased

expression in many cancers including gastrointestinal carcinomas

and precancerous pancreatic lesions [57].

Importantly, and significantly, we only identified integrations

meeting our criteria in these 4 tumor-associated genes and one

other immune-related gene. We did not first look at all known

oncogenes and try to find bacterial integration with these criteria,

nor did we look at oncogenes and try to explain why they are up-

regulated. These four oncogenes merely emerged as those having

such integrations.

While there is an association between bacterial DNA integration

and up-regulation of these genes, it is important to note that LGT

is not associated with the most abundant bacterial transcripts.

Such a result would be expected if the read pairs were merely

laboratory-based artifactual chimeras generated during library

construction. While these human transcripts are up-regulated in

the tumors when compared to other tumors, in at least two cases

they are not the most abundant transcripts. In fact, in the 143

STAD samples, if we examine the most abundant transcript, it is

most frequently annexin A2 (Table 3), which was not identified as

having a bacterial integration. Using our search criteria, we find

no evidence of human-bacteria chimeras in any of the most

abundant transcripts (Table 3) that would suggest such sequences

arise from laboratory artifacts. If we, instead, focus only on the

abundance of the four up-regulated genes above and on the ten

samples where we identified bacterial integration in these genes,

we see no clear pattern that would correlate LGT with transcript

abundance. In CEACAM5, which has the most bacterial

integrations, and CEACAM6, they are .75% less abundant than

the most abundant transcript in that sample (Table S6). In

addition, there are between 35 and 95 transcripts that are more

abundant depending on the sample examined (Table 4).

Furthermore, multiple samples have bacterial integrations in

CEACAM6, but not the more abundant thymosin b10. In fact,

thymosin b10 is more abundant in all of these samples, yet we

detect integrations in thymosin b10 only in one of the samples

(Table 4). If these genes were somehow primed to participate more

in forming chimeras (e.g. through sequence similarity between the

bacteria and human genes or by having an altered 59-cap), one

Table 3. Most abundant transcripts across all 147 STAD samples.

Count Accession Gene

48 NR_003573 Annexin A2 psuedogene 2, (ANXA2P2), non-coding RNA

25 NM_013230 CD24 molecule (CD24)

16 NM_000146 Ferritin

9 NR_037688 Actin, gamma 1 (ACTG1), transcript variant 3, non-coding RNA

doi:10.1371/journal.pcbi.1003107.t003
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would expect that putative integrations would be frequently

associated with thymosin b10, and this is not observed.

Identification of both sides of an integration is powerful

evidence that these are not merely laboratory artifacts. In the

Trace Archive data, such clones would contain a read with non-

overlapping similarity to human and then bacterial sequences and

the other read would have similarity to a human read. These

clones would contain a bacterial sequence flanked on both ends

with human sequence in a single clone. Additionally, they should

not be detected as frequently as clones with one bacterial read and

one human read. Consistent with this we find 2 clones, out of 319

clones, with these characteristics. In the 1000 Genomes projects

where the coverage of all reads sequenced across the human

genome was often less than 16 coverage, we were unable to

accurately find both sides of the integration. In LAML, the

integrations were primarily found randomly distributed around

the human mitochondrial genome. While many putative pairs of

paired reads can be identified that may constitute both sides of the

integration, the large number of putative transfers and the

presence of multiple mitochondrial genomes precludes this

assignment of pairs flanking integrations with any confidence. It

is unlikely that both sides of the integrations would be found in the

STAD RNA sequencing project because the integrations were

found to be in the 59-UTR and the remaining piece would be

quite small relative to the library insert size and be declining in

abundance due to the nature of sequence data at the ends of

transcripts.

Integration of bacterial rRNA
If we examine the bacterial portion of the transcript, it is

frequently rRNA. There are at least two possible explanations for

this observation, including that (a) rRNA is easier to detect in

samples because regions in the rRNA gene are conserved across all

bacteria, and (b) bacterial rRNA actually integrates more

frequently. The former can be excluded as a possibility since in

LAML 68% of the microbiome reads were from rRNA yet 99% of

the LGT reads were from rRNA. This suggests that bacterial

rRNA actually integrates more frequently than other RNA.

Integration of bacterial rRNA is consistent with our under-

standing of the nucleotides recognized by the human innate

immune system. Unmethylated CpG DNA [70] and mRNA [71]

from bacteria are both recognized by the innate immune system,

but at least some rRNA is not [71,72]. Some rRNA is detected by

the immune system [72], possibly explaining why not all bacterial

rRNA mutagenizes the human genome. As such, immune

response may prevent integration through DNA or mRNA

intermediates, but be permissive to the integration of some rRNA.

There is also a precedent for integration of rRNA into animal

genomes that suggests the mechanism of bacterial integration.

SINE elements are derived from tRNA [73], 7SL rRNA [74], and

5S rRNA [75] and are integrated via retrotransposition using

endogenous retrotransposon machinery. It seems plausible that

bacterial rRNA and tRNA may also be integrated using the same

machinery. However, the mechanism by which DNA/RNA enters

the human cell is not as readily apparent.

Barriers to describing LGT
There continue to be several barriers to the description of LGT

using only genome sequencing data. The prevailing paradigm is to

assume laboratory artifacts when other experimental evidence is

lacking. Maintaining this status quo ensures that LGT in

eukaryotes will continue to be overlooked and under-estimated.

There is a notion that this is necessary in order to avoid LGT from

being described inappropriately. This notion, as well as high

profile erroneous reports of LGT in humans and other animals

(e.g. [7,8,76–78]), has had a chilling effect on the field.

Ironically though, experimental validation of LGT is usually in

the form of PCR amplification (e.g. [15,17,79], which is also the

potential source of such artifacts in current sequencing protocols.

While PCR amplification is an independent validation of

capillary sequencing, it is not an independent validation of next

generation sequencing data. One way chimeras are introduced in

Illumina sequencing data is during sequencing library prepara-

tion through cDNA synthesis for RNA samples and PCR

amplification for both RNA and DNA samples [47]. Yet

validation of LGT would occur through cDNA synthesis and/

or PCR amplification. Except for Northern blots, most experi-

mental RNA work proceeds through a cDNA synthesis step

making that step difficult to avoid. Regardless, experiments that

include cDNA synthesis or PCR amplification should not be

considered independent validations of next generation sequenc-

ing data.

Arguably, such experimental validation is not necessary with

newer and more sophisticated methods like those used here. One

of the most prominent reasons for needing experimental validation

of genome sequencing has been due to errors made by assembly

algorithms. Such errors result in the erroneous joining of two

pieces of a genome into one piece with little sequence support (e.g.

a single read spanning a small segment with limited similarity).

These errors could be assessed by examining the assemblies

Table 4. Transcript and rank abundance for the four STAD transcripts with LGT.

Gene Accession
Sample
A

Sample
B

Sample
C

Sample
D

Sample
E

Sample
F

Sample
G

Sample
H

Sample
I

Sample
J

Sample
K

CEACAM5 NM_004363 9.4 9.6 7.8 9.2 ,0.1% ,0.1% 1.1 2.4 2.6 ,0.1% ,0.1%

(92)* (89) (64) (61) (20,972) (21,922) (999) (309) (329) (16,983) (17,174)

CEACAM6 NM_002483 4.1 4.4 5.2 6.7 0.6 0.5 0.4 12.6 13.6 ,0.1% ,0.1%

(289) (281) (129) (96) (1,422) (1,586) (2,610) (36) (38) (20,518) (23,082)

Thymosin B10 NM_021103 44.8 43.4 41.9 41.7 64 60.3 70.8 39.3 42.4 57.3 48

(15) (14) (9) (10) (3) (3) (8) (9) (9) (2) (5)

CD74 NM_001025159 16.5 17.6 4.7 5.5 41.1 32.5 38.2 16.4 18.7 53.2 49.7

(46) (45) (140) (132) (12) (15) (14) (25) (23) (4) (3)

*Transcript abundance was measured by taking the RPKM for that gene in that sample and dividing it by the RPKM of the most abundant gene in that sample; the rank
abundance is shown in parentheses. Values that are underlined are from transcripts that have evidence of bacterial integrations in that sample.
doi:10.1371/journal.pcbi.1003107.t004
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themselves for coverage and read quality that would suggest

missassembly in a region. However, few researchers had access to

that assembly data and it was often limited to the generators of the

assemblies. While such files could be deposited in NCBI’s

Assembly Archive [80], this was infrequently done. For example,

as of April 01, 2013, there were only 193 bacteria and 31

eukaryotes with assemblies in the Assembly Archive while there

were 18,756 bacteria and 3,017 eukaryote with genome projects

registered at NCBI. Researchers without access to such assembly

data have needed to experimentally validate the sequence/

structure of specific contigs in genome sequences. In our

experience, if the underlying assembly was examined for well

supported junctions, one was 100% successful in subsequent

experimental validation of such bacterial integrations into animal

genomes using just the assembly data. Therefore, we designed our

current analysis in a manner that does not rely on assembly. It

relies instead on sequence read mapping with an emphasis on

coverage, indicating higher support across junctions of bacterial

and human DNA.

Conclusions
Populations of human cells have a constant, intimate relation-

ship with the human microbiome. With that comes a potential for

LGT that could be analogous to disease-causing DNA insertions

by transposons, retroviruses, or mitochondria. Although chronic

inflammation is increasingly implicated as a mechanism for cancer

development following bacterial infection, proto-oncogene disrup-

tion by bacterial DNA could provide yet another mechanism. A

well-established model for bacterial disease induced through

somatic cell LGT was described many years ago, namely A.

tumefaciens induced crown gall disease in plants. As nature often

repeats itself, the results presented here indicate a similar situation

may be applicable to humans and warrant targeted research

projects aimed at identifying LGT from the microbiome to human

somatic cells.

Taken together, putative integrations of bacterial DNA in

human tissues, including tumors, can be detected with next-

generation sequencing. Such integrations were detected 2106
more frequently in tumor samples than normal samples. Putative

integration sites in known cancer-related genes were identified

with .46 coverage on the human genome. With the currently

available datasets, such integrations are most frequently detected

between bacterial rRNA and cancer samples from acute myeloid

leukemia and stomach adenocarcinoma. While it is tempting to

speculate that integration of bacterial DNA may cause cancer,

particularly given the detection of integrations in oncogenes that

are over-expressed in these samples and the detection of the same

integrations in multiple individuals, further carefully controlled

experiments are needed, but now justified.

Materials and Methods

Trace Archive analysis
The 113,046,604 human shotgun sequencing traces in the

NCBI Trace Archive as of March 11, 2009, were compared to all

the bacterial genomes available on the NCBI genomes ftp site on

November 11, 2010. Initial matches between these two datasets

were identified with NUCMER using the MAXMATCH param-

eter [37]. A data subset was then created of the human traces with

positive matches and all other reads from that clone using the

XML available from NCBI parsed with custom scripts. This data

subset was searched against NT using BLASTN [81]. The output

of these BLAST searches was parsed to identify bacterial DNA

linking to human DNA either directly or within a clone. The

corresponding chromatograms hosted at NCBI and the wwwblast

results against NT for 2,871 sequence pairs were inspected

manually to remove poor quality sequences, vector contaminants,

and low complexity sequence matches resulting in a curated set of

putative integrations (Table S1, S2). Importantly, the traces found

to contain an integration boundary within the trace may also

contain an integration boundary measured within the clone. In

this way, the two counts are not exclusive of one another.

Analysis of Illumina data from the TCGA
Illumina sequences were downloaded from the 1000 Genomes

Project that were in the NCBI Short Read Archive as of

November 2010 and from the TCGA in the NCBI dbGap

between September 18, 2011, and September 20, 2011. All reads

were mapped to both the human genome (hg19) and all the

bacterial genomes available on the NCBI genomes ftp site on

November 11, 2010 using the short read mapper BWA [40] with

the default parameters. Using custom scripts, pairs of reads were

identified as spanning integrations when only one read mapped to

the human genome and its mate mapped to a bacterial genome.

Unless otherwise noted, paired reads spanning junctions that

were identified in the initial BWA screen were screened for

uniqueness, low complexity, and taxonomy. Low complexity

sequence and duplicate reads were removed using PRINSEQ

[82]. For low complexity filtering, the DUST method with an

entropy cutoff of 7 was applied to each read in a pair separately. A

pair is considered low-complexity if either read is considered low

complexity. Duplicate reads were flagged by concatenating the

two reads together in a pair and running the PRINSEQ derep

function to find exact duplicates and the reverse complements of

exact duplicates (flag 14). After low complexity and duplicate

screening, both bacterial and human reads were searched against

NCBI’s NT database using BLASTN with an e-value cutoff of

1025. Reads identified as bacterial in the initial BWA screen were

required to match bacteria in NT and not have a best match to

human. The bacterial half of all putative LGT’s was remapped

against all complete bacterial genomes in RefSeq individually.

These mappings were used to assign an OTU based on the LCA.

The microbial composition was examined using Krona plots [83]

as well as heat maps generated in the R software package.

BWA computes were executed using the CloVR virtual

machine [84]. The CloVR virtual machines were deployed in

parallel on the Data Intensive Academic Grid (DIAG) cloud

infrastructure. Data staging, output retrieval and cluster manage-

ment was accomplished using CloVR’s Vappio software package.

Assignment of lowest common ancestor
Reads identified as putative bacterial reads in either the

microbiome or lateral gene transfer were mapped using BWA

with default parameters against all complete bacterial genomes in

RefSeq. The LCA is calculated based on the congruent taxonomy

for all genomes with mappings. The use of RefSeq limits the

taxonomic assignments available to only those with complete

genomes. However, the use of genomic sequences, as opposed to

all deposited sequences in NT, ensures that the taxonomic

assessment of the database sequence is correct. For reads assigned

to the microbiome, once the LCA is calculated, the most specific

taxonomic assignment is used as the bacterial OTU (Figure S10).

Generation of circular figures
Circular figures were generated with Circos [85] using putative

LGT reads filtered using the method described above. Down

sampling of the data to 5% for Figure S4A, 0.5% for Figure 6A

and 2% for Figure 6BC was needed to successfully draw the purple
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linkages. For Figure 3 the data was not blast-verified in the same

manner as the bacterial integration data as there are significant

amounts of HPV integrant sequence data in the database with

human listed as the source in the taxonomy. While this is correct,

it stymied the blast validation. Therefore, reads were blast

validated to confirm that they were HPV – human, but they

could also be human – human in this screen with one of the

human reads arising from HPV since many HPV reads exist in

reference databases with the taxonomy assignment of Homo sapiens.

Coverage measurements
Each read pair was assigned an average coverage value

measured along the human mapping that was used to hone in

on integrations with increased coverage. This value is obtained by

running samtools mpileup [86] on the human read for each read

pair indicating an integration. Coverage was calculated separately

for each sequencing run. If a human read was assigned a value of

.46 coverage, it had at least five unique reads aligning to that

region on the human genome. Reads on the integration site

cannot be mapped with BWA, but would be adjacent to reads

supporting that integration.

Expression analysis
The RNA-Seq reads were mapped against hg19 with BWA and

the reads per kilobase of gene per million human mapped reads

(RPKM) was calculated as using the predicted transcriptional start

and stop sites available from the UCSC annotation. The ratio was

calculated by dividing the RPKM for a given gene in a given run

by the average RPKM for that gene across all runs. The log2ratio

was used for the expression analysis presented in Figure 9.

Generation of phylogenetic trees
Nine randomly selected reads supporting bacterial integrations

were searched against the NT database using BLASTN [81] with

an expected threshold of 10211 and with uncultured bacterial

sequences removed using the BLAST interface. Each read and its

first hit for each high scoring pair was aligned in a multiple

sequence alignment using ClustalW [87] with default settings. This

multiple sequence alignment was then used to draw a phylogenetic

tree using PhyML [88] with default settings and 1000 bootstraps.

The most likely tree and bootstrap support values from PhyML

were visualized using FigTree (http://tree.bio.ed.ac.uk/software/

figtree/).

Statistics
Statistical modeling and correlation analysis was performed

using the R package (v 2.7.2).

Supporting Information

Figure S1 Detailed schematic of method employed to
identify putative LGT reads. Following the identification of

putative LGT reads and microbiome reads, a series of steps were

undertaken to remove low complexity sequences, remove

duplicates, remap the reads, and generate data for the interfaces

provided. Such data includes the assignment of an LCA,

measuring coverage, and establishing overlaps with genes as well

as generating krona plots and heat maps. Where possible, existing

tools were used like BWA, BLAST, MPILEUP, and PRINSEQ.

(PDF)

Figure S2 Specificity of taxonomic assignment varies
according to the conserved and variable regions of the
16S rRNA. When reads supporting bacterial integration in

LAML (A) or STAD (B) were mapped to a representative

Acinetobacter or Pseudomonas rRNA, respectively, the specificity of the

OTU assignment tracks with the known variable regions in the

16S rRNA. This is illustrated with a bar chart where each

nucleotide position is represented by a bar colored by the

proportion of OTUs supported by reads aligning at that position.

For example, one can observe that in the conserved regions

between V2 and V3 or between V5 and V6 that OTUs are most

frequently only as specific as ‘‘Bacteria’’. In contrast, in the V1–V2

region more specific genus-, species-, and strain-level assignments

can be made.

(PDF)

Figure S3 Phylogenetic evaluation of BWA and BLAST
LCA assignments. Ten randomly selected reads with OTU

assignments across 4 levels of the taxonomy (i.e. strain, species,

genus, family) were selected for a phylogenetic analysis (Panels A–

J). This analysis demonstrates parsimony between the BLAST-

based OTU, the BWA-based OTU, and the phylogeny. It also

higlights issues with using NT. In the release of NT used for the

phylogeny, but not the initial screen, several sequences appear

from eukaryotic genome sequencing projects. For example,

sequences were identified with BLAST that were attributed to

fish (C), moths (G), and oomycetes (H). For at least the moth and

fish, it seems reasonable that the contigs generated from random

sequencing and assembly may include bacterial contigs from

members of the microbiome. In addition, sequences from clones of

NotI digested human cell line DNA [52] appear in this analysis (J).

This occurs because sequences attributed to clones were not

excluded from this analysis as they were in the prior BLAST-based

LCA analysis. In the manuscript describing the NotI clones, the

authors suggest they are likely of Pseudomonas origin and represent

integrations in the human genome [52] analogous to ones

described here.

(PDF)

Figure S4 Distribution of putative LGTs from the 1000
Genomes Project. The read pairs supporting LGT (purple) into

the human genome (blue) from the bacterial genome (red) with

similarity to Bradyrhizobium sp. BTAi1 (NC_008475.1, Panel A) and

Stenotrophomonas maltophilia K279a (NC_010943.1, Panel B) are

randomly distributed across both bacterial genomes.

(EPS)

Figure S5 Distribution of bacterial OTUs from the
microbiome and bacterial DNA integrations in the
1000 Genomes Project. The proportion of reads from each

bacterial OTU is illustrated from the microbiome (Panel A) and

LGT (Panel B) across the 1000 Genomes Project. The log-

transformed proportion of bacterial OTU per sample for the

microbiome (Panel C) and LGT (Panel D) are clustered based on

the microbiome profiles in Panel C and illustrated using heat

maps.

(TIF)

Figure S6 Histogram of the coverage across the human
genome resulting from the aggregate of all reads
supporting bacterial integration in the TCGA. The

frequency of positions in the human genome is illustrated relative

to a given coverage supporting bacterial integrations.

(EPS)

Figure S7 Distribution of bacterial OTUs from the
microbiome and bacterial DNA integrations in acute
myeloid leukemia. The proportion of reads from each bacterial

OTU is illustrated from the microbiome (Panel A) and LGT

(Panel B) across all LAML samples. The log-transformed
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proportion of each bacterial OTU per sample representing the

microbiome (Panel C) and LGT with .46coverage (Panel D) are

clustered based on the microbiome profiles in Panel C and

illustrated using heat maps.

(EPS)

Figure S8 Pseudomonas-like integrations into the ge-
nome of stomach adenocarcinoma samples. Putative

integrations into the human nuclear genome (blue) from a

Pseudomonas level OTU (red) in stomach adenocarcinoma are

illustrated. Only reads mapping to regions of the human genome

with .46 coverage are shown.

(EPS)

Figure S9 Histograms of the insert size of paired reads
mapping to the bacterial genome. The distribution of the

insert sizes was calculated from the paired reads where both reads

map to the bacterial genome for four STAD samples (Panels A–D)

and four LAML samples (Panels E–H). For comparison, the

distribution of insert sizes was also calculated for four N. meningitidis

samples sequenced independently with mapping to the consensus

sequence for that strain (Panels I–L) and to FAM18 (NC_008767.1)

[89], a different strain of the same species (Panels M–P). For all

panels the frequency of a given insert size is 10006the y-axis value.

(EPS)

Figure S10 Calculating bacterial LCAs and OTUs. Reads

identified as bacterial were mapped using BWA default parameters

against all complete bacterial genomes in RefSeq. BWA aligns

reads to the reference genomes allowing a fixed number of

differences between the query read and reference genome,

dependent on the read length. For example, the LAML and

STAD reads are 51 bp and allowed 3 differences. After BWA has

mapped the bacterial read to all bacterial genomes, an LCA is

calculated based on the congruent taxonomy for all genomes with

mappings. Once the LCA is calculated, the most specific

taxonomic assignment is used as the bacterial OTU. This method

of OTU assignment is a computationally efficient method for

analyzing the human microbiome; however, the analysis is limited

to the bacteria available in the database. To compensate for this

limitation, a relatively conservative approach for assigning OTUs

was used such that a match that contains 3-differences is weighted

the same as a match with no mismatches in making the OTU

assignment.

(EPS)

Table S1 Reads from the Trace Archive supporting LGT
in the somatic human genome. The reads listed here contain

non-overlapping matches to both human and bacteria sequences.

Data deposited in various fields in the Trace Archive are presented

along with a with a summary of the results generated.

(XLSX)

Table S2 Read pairs from the Trace Archive supporting
LGT in the somatic human genome. The read pairs listed

here have one read that matches human sequences and one read

that matches bacteria sequences. Data deposited in various fields

in the Trace Archive are presented along with a summary of the

results generated.

(XLSX)

Table S3 Read pairs from the 1000 Genomes project
that support LGT in the somatic human genome. The

read pairs listed here have one read that matches human

sequences and one read that matches bacteria sequences. Data

deposited in various fields in the Sequence Read Archive are

presented along with a summary of the results generated.

(XLSX)

Table S4 Read pairs from TCGA that support LGT in
the somatic human genome. The read pairs listed here have

one read that matches human sequences and one read that

matches bacteria sequences. Data deposited in various fields in the

Sequence Read Archive or the TCGA portal are presented along

with a summary of the results generated.

(ZIP)

Table S5 Abnormal insert sizes for Illumina libraries.
The percentage of reads with abnormal insert sizes for

experimental and control samples is listed for the data presented

in Figure S9.

(PDF)

Table S6 Expression analysis for STAD samples. The

RPKM is calculated for each gene using the STAD RNAseq data.

(ZIP)
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