
generates substantial off-target cytotoxicity for
uninfected cells (fig. S11) (21).
In a primary T cell model of HIV latency (24),

>60% of noise enhancers tested synergized with
PMA (Fig. 4C), with some compounds reactivat-
ing half of the remaining cells that PMA alone
did not reactivate (e.g., mebendazole, V7). More-
over, in both Jurkat and primary T cell models,
noise suppression with manidipine hydrochlo-
ride, or S1, substantially reduced latent reactivation,
as predicted from theory (Fig. 4, D and E).
Although there may be considerable technical
challenge in identifying noise suppressors—due
to the extrinsic noise threshold (4)—noise sup-
pression could ultimately be used in strategies to
limit spontaneous reactivation of latent HIV, sta-
bilize other fate-specification processes, or iden-
tify antagonistic drug combinations.
Overall, the noise-modulating compounds are

previously approved by the U.S. Food and Drug
Administration and span diverse chemical classes
andmechanisms of action [tables S1, S2, and (21)].
Although the effects of a single round of reac-
tivation were incomplete (with about 50% of
remaining latent cells responding for the best
enhancers in primary T cells), latency-reversing
strategies will likely require multiple rounds of
treatment (10) and noise-enhancing compounds
may allow each round of treatment to be more
effective by including drugs with highly diverse
mechanisms of action and nonoverlapping tox-
icities. Moreover, we identified these compounds
in a fairly small screen of ~1600 compounds; a
more extensive screen might identify compounds
that work better to allowmultiple rounds of reac-
tivation to eliminate the virus. For fundamental
cell-biology research on the roles of noise (e.g.,
in cell-fate specification), noise-modulating chem-
icals could provide an approach to complement
existing genetic noise-perturbation methods
(25–28). From a pharmaceutical science and drug-
screening perspective, “noise screening” pre-
sents an orthogonal axis to detect synergistic drug
combinations. Compared with random synergy
screening, noise screening requires substantially
fewer tests. Blind synergy searches for pairwise
combinations of N compounds require ~N2 tests;
by contrast, noise screening permits ~N tests.
Noise screening might help identify compounds
for manipulating other fate-switching pheno-
types such as cellular reprogramming, metasta-
sis, and bacterial persistence.
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Single-cell RNA-seq highlights
intratumoral heterogeneity
in primary glioblastoma
Anoop P. Patel,*1,2,3,4 Itay Tirosh,*3 John J. Trombetta,3 Alex K. Shalek,3

Shawn M. Gillespie,2,3,4 Hiroaki Wakimoto,1 Daniel P. Cahill,1 Brian V. Nahed,1

William T. Curry,1 Robert L. Martuza,1 David N. Louis,2 Orit Rozenblatt-Rosen,3

Mario L. Suvà,2,3†‡ Aviv Regev,3,4,5†‡ Bradley E. Bernstein2,3,4†‡

Human cancers are complex ecosystems composed of cells with distinct phenotypes,
genotypes, and epigenetic states, but current models do not adequately reflect tumor
composition in patients. We used single-cell RNA sequencing (RNA-seq) to profile 430
cells from five primary glioblastomas, which we found to be inherently variable in their
expression of diverse transcriptional programs related to oncogenic signaling, proliferation,
complement/immune response, and hypoxia.We also observed a continuum of stemness-
related expression states that enabled us to identify putative regulators of stemness in vivo.
Finally,we show that established glioblastoma subtype classifiers are variably expressed across
individual cells within a tumor and demonstrate the potential prognostic implications of such
intratumoral heterogeneity.Thus, we reveal previously unappreciated heterogeneity in diverse
regulatory programs central to glioblastoma biology, prognosis, and therapy.

T
umor heterogeneity poses a major chal-
lenge to cancer diagnosis and treatment. It
canmanifest as variability between tumors,
wherein different stages, genetic lesions,
or expression programs are associated with

distinct outcomes or therapeutic responses (1–3).
Alternatively, cells from the same tumor may
harbor different mutations or exhibit distinct
phenotypic or epigenetic states (4–7). Such intra-
tumoral heterogeneity is increasingly appreciated
as a determinant of treatment failure and disease
recurrence (8).
Glioblastoma is an archetypal example of a het-

erogeneous cancer and one of the most lethal

human malignancies (9, 10). Intratumoral heter-
ogeneity and redundant signaling routes likely
underlie the inability of conventional and targeted
therapies to achieve long-term remissions (11–13).
These tumors contain cellular niches enriched for
distinct phenotypic properties, including transient
quiescence and self-renewal (14–16), adaptation to
hypoxia (17), and resistance to radiation-induced
DNA damage (18, 19). DNA and RNA profiles of
bulk tumorshaveenabledgeneticandtranscriptional
classification of glioblastomas (20, 21). However, the
relationships among different sources of intra-
tumoral heterogeneity—genetic, transcriptional,
and functional—remain obscure.
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Single-cell transcriptome analysis by RNA se-
quencing (RNA-seq) (22, 23) should in principle
enable functional characterization from landmark
genes and annotated gene sets, relate in vivo states
to in vitro models, inform transcriptional classi-

fications based on bulk tumors, and even capture
genetic information for expressed transcripts. To
analyze intratumoral heterogeneity systematically,
we isolated individual cells from five freshly re-
sected and dissociated human glioblastomas and
generatedsingle-cell full-length transcriptomesusing
SMART-seq (96 to 192 cells per tumor, total 672
cells; Fig. 1A). Before sorting, the suspension was
depleted for CD45+ cells to remove inflammatory
infiltrate. As a control, we also generated population
(bulk) RNA-seq profiles from the CD45-depleted
tumor samples. All tumorswere IDH1/2wild-type
primary glioblastomas (fig. S1), and threewereEGFR
amplifiedasdetermined by routine clinical tests
(table S1). We excluded genes and cells with low
coverage (24), retaining ~6000 genes quantified
in 430 cells from five patient tumors and pop-

ulation controls (table S1). The population-level
controls correlated with the average of the single
cells in that tumor (fig. S2), supporting the accu-
racy of the single-cell data. Individual cells from
the same tumorweremore correlated to each other
than were cells from different tumors (fig. S2).
Nevertheless, correlations between individual cells
from the same tumor showed a broad spread (cor-
relation coefficient r ~0.2 to 0.7) (fig. S2), consist-
ent with intratumoral heterogeneity.
Although our isolation procedures specifically

targeted glioblastoma cells, we testedwhether our
sampling also included normal cells. To distin-
guish normal from malignant, we attempted to
infer large-scale copy-number alterations for each
cell by averaging relative expression levels over
large genomic regions (24). This allowed us to

Fig. 1. Intratumoral glioblastoma heterogeneity quantified by single-cell
RNA-seq. (A) Workflow depicts rapid dissociation and isolation of glioblastoma
cells from primary tumors for generating single-cell and bulk RNA-seq profiles
and deriving glioblastoma culture models. (B) Clustering of CNV profiles in-
ferred fromRNA-seq data for all single cells and a normal brain sample.Clusters
(dendrogram) primarily reflect tumor-specific CNV [colored bar coded as in
(D)]. Topmost cluster (red, arrow) contains the normal brain sample and 10
single cells, 9 of which correlate with normal oligodendrocyte expression pro-
files and 1withnormalmonocytes (“Oligo”and “Mono,”black andwhite heatmap).
(C) Heatmap of CNVsignal normalized against the “normal”cluster defined in (B)

showsCNVchangesbychromosome (columns) for individual cells (rows). All cells
outside the normal cluster exhibit chromosome 7 gain (red) and chromosome 10
loss (blue), which are characteristic of glioblastoma. (D) Multidimensional scaling
illustrates the relative similarity between all 420 single tumor cells and population
controls. The distance between any two cells reflects the similarity of their ex-
pression profiles.Cells group by tumor (color code), but each tumor also contains
outliers that are more similar to cells in other tumors. (E) RNA-seq read densities
(vertical scale of 10) over surface receptor genes are depicted for individual cells
(rows) fromMGH30. Cell-to-cell variability suggests a mosaic pattern of receptor
expression, in contrast to constitutively expressed GAPDH.
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suppress individual gene-specific expression pat-
terns and emphasize the signal of large-scale
copy-number variations (CNVs). As a control, we
included RNA-seq profiles from (bulk) normal
human brain (25). Hierarchical clustering of all
single cells and normal brain samples identified
seven groups with concordant CNV profiles (Fig.
1B). The normal brain sample clustered with 10
single cells that presumably have “normal” copy
number. In parallel, unsupervised transcriptional
analysis identified nine outlier cells with increased
expression of mature oligodendrocyte genes and
down-regulation of glioblastoma genes (figs. S3
and S4). Notably, all nine of these expression
outliers clustered with the normal brain in the
CNV analysis (Fig. 1B). The one additional “nor-
mal” cell inferred from this CNV cluster correlated
with a monocytic expression signature (26) (Fig.
1B). None of the remaining 420 cells show sim-
ilarity to the transcriptional programs of non-
malignant brain or immune cell types (fig. S5) (24).
Although nonmalignant cells are critical compo-
nents of the tumor microenvironment, the combi-
nation of dissociation methods, CD45+ depletion,
flow cytometry gating, and computational filtering
used in this study largely excluded nontumor cells.
Normalization of CNV profiles using signal from

the “normal” cluster revealed coherent chromo-
somal aberrations in each tumor (Fig. 1C). Gain of
chromosome 7 and loss of chromosome 10, the two
most common genetic alterations in glioblastoma
(20), were consistently inferred in every tumor cell.
Chromosomal aberrations were relatively consist-
ent within tumors, with the exception that MGH31
appears to contain two genetic clones with discor-
dant copy-number changes on chromosomes 5,
13, and 14. Although these data suggest large-
scale intratumoral genetic homogeneity, we rec-

ognize that heterogeneity generated by focal al-
terations and point mutations will be grossly
underappreciated using thismethod. Nevertheless,
suchpanoramicanalysis of chromosomal landscapes
effectively separated normal frommalignant cells.
To analyze global transcriptional interrelation-

ships, we used multidimensional scaling to repre-
sent the degree of similarity among the cells in
the data set (Fig. 1D) (24). In contrast to the
chromosome-scale analysis above, we observed
extensive intratumoral heterogeneity at the tran-
scriptional level. Although most cells grouped by
tumor of origin, there were many examples of
cells from one tumor crossing into the transcrip-
tional space of another tumor.Moreover, the tran-
scriptional diversity within each individual tumor
was significantly greater than that observed for
the normal oligodendrocytes (fig. S4) or for an in
vitro model of stemlike tumor-propagating glio-
blastoma cells (GBM6 and GBM8) (27, 28) (fig. S2).
Cell-to-cell variability is also evident in the ex-

pression and splicing patterns of signaling mol-
ecules such as receptor tyrosine kinases (RTKs),
which are important therapeutic targets (29).
Mosaic RTK amplification and redundant sig-
naling pathways contribute to targeted therapy
resistance in glioblastoma (11, 12, 30). We found
mosaic expression for EGFR, PDGFRA, PDGFA,
FGFR1, FGF1, NOTCH2, JAG1, and other surface
receptors and ligands in pathways pertinent to
glioblastoma (Fig. 1E and figs. S6 and S7). Notably,
the transcripts encoding such genes are highly
expressed in individual cells and in the aggregate
profiles, increasing our confidence that their ab-
sence reflects true negatives (23). Additionally,
multiple EGFR truncations and in-frame dele-
tions have beendescribed, including anoncogenic
mutant form, EGFRvIII, which lacks the extra-

cellular domain (de2-7) and is a putative target for
immunotherapy (31). Of the three tumors with
significantEGFR expression in our data set (MGH26,
MGH30, andMGH31), MGH30 expresses EGFRvIII.
By examining junction-spanning “spliced” reads at
the single-cell level, we identified cells in MGH30
expressingwild-type EGFR (7%) and EGFRvIII (19%),
as well as a second oncogenic variant [de4 (32);
25%] (fig. S8). These variantswere almostmutually
exclusive, with just 1 to 2% of cells coexpressing
wild-type EGFR and EGFRvIII. Moreover, several
cells lack EGFR but express other tyrosine kinase
receptors, suggesting potential alternative path-
ways for proliferative signaling (Fig. 1E and fig. S7).
For example, EGFR expression is anticorrelated
with PDGFRA and PDGFC expression in cells from
MGH30 (fig. S9). These findings suggest that heter-
ogeneous expression and/or mutational status of
RTKs and other signaling molecules across indi-
vidual glioblastoma tumor cells may compromise
therapies targeting receptor immunogenicity or
RTK signaling.
We next used hierarchical clustering and prin-

cipal component analysis to define four meta-
signatures, each composed of multiple related
clusters that coherently vary across individual
cells from a given tumor or the full data set
(24) (Fig. 2A). These four meta-signatures were,
respectively, enriched for genes related to cell
cycle (Fig. 2B), hypoxia (Fig. 2C), complement/
immune response (fig. S10), and oligodendrocyte
function (demarcating the nine normal oligo-
dendrocytes). We validated the coexpression of
meta-signature genes by single-cell quantitative
polymerase chain reaction (QPCR) on another 91
cells fromMGH26 and 76 cells fromMGH30 using
primers for 24 genes (fig. S11). Although im-
mune cells are an important component of the

Fig. 2. Unbiased analysis of intratumoral heterogeneity reveals coherent
transcriptional modules. (A) Gene sets that vary coherently between cells in
specific tumors or across the global data set (colored boxes) were identified by
principal component analysis or clustering (24). Hierarchical clustering of
these gene sets across all cells (tree) reveals four meta-signatures related to

hypoxia, complement/immune response, oligodendrocytes, and cell cycle.
(B) Heatmap shows expression of the cell cycle meta-signature, selected cell
cycle gene sets, and representative genes from the signature (rows) in individual
glioblastoma cells (columns). Cells were grouped by tumor and ordered by meta-
signature score (top). (C) Heatmap depicts hypoxia meta-signature as in (B).
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tumor microenvironment, expression of comple-
ment and immune genes by malignant cells was
somewhat unexpected. We validated this result
using twoapproaches.MGH29harbors apreviously
described p53 mutation, R248L (C→T) (33) (table
S1). Although coverage of this transcript was rela-
tively low, we identified three cells from MGH29
that clearly contain this oncogenicmutation. All of
these cells also expressed C3 and other genes from
the complement/immunemodule (fig. S12). More-
over, direct examination of additional cells scoring
for the complement/immune signature confirmed
chromosomal aberrations characteristic of glio-
blastoma (Fig. 1C). Notably, the module may be
more generally relevant, as robust coexpression
of these genes was detected in multiple cell lines
derived from brain tumors in the Cancer Cell
Line Encyclopedia (CCLE) (fig. S13) (34).
Another notable feature of the module analy-

sis is the activity of the cell cycle program in a
relatively small proportion of cells from each

tumor, ranging from just 1.4% in MGH31 to
21.9% in MGH30 (table S2 and Fig. 2B). These
values contrast markedly with those of the in
vitro glioblastoma models in which almost 100%
of cells scored positively for the cell cyclemodule,
but are relatively consistent with Ki67+ quantifi-
cations for these tumors (figs. S14 and S15). We
investigated several markers previously linked
to quiescence, including HES1, TSC22D1, and
KDM5B (35–37). Transcripts for HES1 were not
well detected in our data owing to low expres-
sion, but TSC22D1 and KDM5B showed signif-
icantly higher expression in noncycling tumor
cells (fig. S16A). KDM5B, which has been impli-
cated in quiescence and therapeutic resistance
in melanoma, was detected in 10 to 20% of in-
dividual cells across all tumors and confirmed
to anticorrelate with cell cycle meta-signature by
single-cell QPCR in MGH26 (fig. S16B).
Clustering of genes anticorrelated to the cell

cycle meta-signature also revealed a group of 12

genes (fig. S17A), nine of which were in the hy-
poxiameta-signature (Fig. 2C). Indeed, thesemeta-
signatures were diametrically opposed (fig. S17B).
Although this meta-signature might be influenced
by tissue-processing procedures, hypoxia has been
studied extensively as a stimulus for angiogenesis
(17) and transdifferentiation of glioblastoma stem
cells into vascular endothelium (38–40). Reorder-
ing of the cells by hypoxicmodule score, whichwas
pronounced inMGH28 andMGH31, demonstrated
clear gradients in each sample (Fig. 2C), potentially
reflecting variations in the tumor microenviron-
ment that affect oxygen tension, blood supply, or
nutritional source (17, 38–40). Further studies
are needed to understand the spatial relation-
ships of these transcriptional niches in vivo.
Thus, in vivo microenvironment and genes linked
to quiescence may affect dormant and possibly
refractory compartments in glioblastoma.
Glioblastomas likely contain a primitive subpop-

ulation of stemlike cells (GSCs) with preferential

Fig. 3. Transcriptional signatures of a stemlike compartment in primary
glioblastoma. (A) Stemlike (GSC) and differentiated (DGC) culture models
were derived from patient tumor MGH26. GSCs grow as spheres (left, top),
initiate tumors in xenotransplantation (right, top), and express the stem cell
marker CD133 (right, bottom). (B) Heatmap depicts expression of genes
(rows) from a stemness signature in differentiated models (DGC, left columns),
stemlike models (GSC, right columns) derived from 3 tumors, and in 70
individual cells from MGH31 (middle). (C) Bar plot depicts the Pearson
correlation coefficient (y axis) between the stemness signature and selected

transcriptional modules in each tumor cell cycle; transcriptional targets of
POU3F2, SOX2, SALL2, OLIG2 (core TF) (42); NFI transcriptional targets (NFI)
(41); and the proneural (PN), classical (CL), mesenchymal (MES), and neural
(N) subtypes defined by the Cancer Genome Atlas (21). (D) Plot depicts
stemness score (y axis) computed from stemness signature gene expression
in individual cells from each tumor (x axis) ordered by score. Bar plots depict
the overall variance (y axis, SD) in the stemness score (red) and the average
variance of simulated control gene sets (blue), confirming the significance of
the gradient.
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resistance to existing therapies (16, 18). GSCs can
be modeled in vitro as spherogenic cultures that
potently initiate tumors in mice (15, 27). Glioblas-
toma is also postulated to contain more differ-
entiated cells (DGCs) that can be expanded as
adherent monolayers in serum (27, 39). We es-
tablished GSC and DGC cultures from three tumors
in our study (MGH26, MGH28, and MGH31). As
expected, the GSCs exhibit a stemlike phenotype,
express the stemness marker CD133, and propagate
tumors in xenotransplantation (Fig. 3A and fig.
S18). To identify in situ tumor cells with stemlike or
differentiated phenotypes, we derived a stemness
signature from a consensus set of genes differen-
tially expressed between three respective GSC and
DGC culture models (Fig. 3B).
Application of the stemness signature to the

single-cell transcriptional profiles revealed stem-
ness gradients in all five tumors (Fig. 3D). The
stemness gradient is modestly anticorrelated to
the cell cycle meta-signature (Fig. 3C), consistent
with the notion that stemlike cells divide at
lower overall rates (16). Notably, the stemness-

differentiation axis was occupied continuously
rather than discretely, consistent with the notion
that the respective in vitro models emulate phe-
notypic extremes but do not capture the full spec-
trum of cellular states within a primary tumor.
Genes correlated to the in vivo gradient include

expected classifier genes from the in vitro analysis,
as well as additional candidates that may reflect
aspects of stemness not evident in the culture
model (fig. S19, red and blue, respectively). These
include several transcription factors (TFs), such
as POU3F2, NFIA, and NFIB, which have been
implicated in tumor propagation, neural stem cell
self-renewal, and quiescence (41, 42). The in vivo
stemness gradient also significantly correlated
with the average expression of target genes for
these TFs, which we predicted from chromatin
immunoprecipitation (ChIP)–seq data (Fig. 3C).
Thus, expression signatures and regulatory cir-
cuits derived fromGSC and neural stem cellmodels
converge to a coherent gradient of cells within
primary glioblastoma and identify TFs likely to
promote stemlike regulatory programs in vivo.

We next considered the classification scheme
established by The Cancer Genome Atlas (TCGA)
(21) to distinguish four glioblastoma subtypes:
proneural, neural, classical, andmesenchymal. Al-
though these original definitionswere established
from bulk tumor profiles, we wanted to explore
whether individual cells in a tumor vary in their
classification. On the basis of population-level
(bulk) expression data, the tumors in our study
scored as proneural (MGH26), classical (MGH30),
or mesenchymal (MGH28 and MGH29) subtypes
(fig. S20). To examine the distribution of subtype
signatures across individual cells, we calculated sub-
type scores for each cell using the classifier gene sets.
All five tumors consist of heterogeneous mix-

tures with individual cells corresponding to dif-
ferent glioblastoma subtypes (Fig. 4, A and B).
All tumors had some cells conforming to a pro-
neural subtype regardless of the dominant subtype
of the tumor, whereas each of the other subtypes
was below detection in at least one tumor. Single-
cell QPCR of 30 classifier genes in 167 addition-
al cells from MGH26 and MGH30 (fig. S21)

Fig. 4. Individual tumors contain a spectrum of glioblastoma subtypes and
hybrid cellular states. (A) Heatmap depicts average expression of classifier genes
for each subtype (rows) across all classifiable cells grouped by tumor (columns). PN:
proneural; CL: classical; MES: mesenchymal; N: neural. Each tumor contains a
dominant subtype, but also has cells that conform to alternate subtypes. (B)
Hexagonal plots depict bootstrapped classifier scores for all cells in each tumor. Each
data point corresponds to a single cell and is positioned along three axes according to
its relative scores for the indicated subtypes (supplementary methods). Cells
corresponding to each subtype are indicated by solid color, whereas hybrid cells are

depicted by two colors. (C) Kaplan-Meier survival curves are shown for proneural
tumorsfromtheCancerGenomeAtlas(21). Intratumoralheterogeneitywasestimated
on the basis of detected signal for alternative subtypes and used to partition the
tumors into a pure proneural group and three groups with the indicated additional
subtype(groupsize inparentheses).Tumorswithmesenchymalsignalhadsignificantly
worse outcome than pure proneural tumors (P < 0.05). (D) Kaplan-Meier survival
curves shown for proneural tumors partitioned on the basis of the relative strength of
alternativesubtypesignatures inaggregate (24).Tumorswithhighsignal foralternative
subtypes had significantly worse outcome than pure proneural tumors (P < 0.05).
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confirmed the presence ofmultiple subtypeswithin
these tumors in proportions similar to those iden-
tified by single-cell RNA-seq. Thus, although
population-level data detect the dominant tran-
scriptional program, they do not capture the true
diversity of transcriptional subtypes within a tumor.
Intratumoral subtype heterogeneity provides

potentially important insights into tumor biology.
The stemness signature is strongest in individual
cells conforming to the proneural (r= 0.12 to 0.68,
P < 0.01, Student’s t test) and classical (r = 0.26 to
0.64, P < 0.01, Student’s t test) subtypes, but un-
derrepresented in cells of the mesenchymal
subtype (Fig. 3C and fig. S22), which has been
correlated with astrocytic differentiation (21). In
contrast, cells of the neural subtype do not co-
rrespond to either in vitromodel (Fig. 3C), but are
more similar to normal oligodendrocytes (Fig.
4B). These findings highlight parallels between
intratumoral cellular heterogeneity in glioblas-
toma and cellular diversity in the developing
brain, with respective subsets of tumor cells
resembling a progenitor compartment, an astro-
cytic lineage, or an oligodendrocytic lineage. This
analysis also revealed “hybrid” states (Fig. 4B) in
which a single cell scored highly for two subtypes,
most commonly classical and proneural (progen-
itor states) or mesenchymal and neural (differ-
entiated states). These hybrid states may reflect
aberrant developmental programs and/or inter-
conversion between phenotypic states.
Finally, we examined whether subtype heter-

ogeneity is relevant toprognosis (24).We focusedon
tumors classified as proneural, controlling for IDH1
status (3, 43) and binning them into three groups:
(i) pure proneural tumors without any transcrip-
tional signal for other subtypes; (ii) low-heterogeneity
tumors with modest signal for other subtypes (de-
fined as average expression of the alternative sub-
type genes greater than the median value in the
proneural group); and (iii) high-heterogeneity tu-
mors with stronger signals for other subtypes (de-
fined as greater than the 85th percentile in the
proneural group).Wealso partitioned the proneural
tumors according to the other detected subtype.We
found that increasedheterogeneitywas associated
with decreased survival (Fig. 4, C and D). This sug-
gests that the clinical outcome of a proneural glio-
blastoma is influenced by the proportion of tumor
cells of alternate subtypes and emphasizes the
clinical importance of intratumoral heterogeneity.
We have leveraged single-cell transcriptomics

to characterize heterogeneous gene expression
programs within five glioblastoma tumors and
interrelate their transcriptional, functional, and
(to a limited extent) genetic diversity. These
findings have fundamental implications for can-
cer biology and therapeutic strategies, as signaling
molecules relevant to targeted therapy show cell-
to-cell variability in expression and isoform selection.
Moreover, in vivo tumor cells display a spectrum
of stemness and differentiation states, variable
proliferative capacity, and variable expression of
quiescence markers, all of which may confound
therapeutic strategies. Although population-level
methods for glioblastoma classification have pro-
vided important prognostic insights, they do

not recapitulate the diversity of transcriptional
programs present in an individual tumor. Our
analysis reveals that tumors contain multiple
cell states with distinct transcriptional programs
and provides inferential evidence for dynamic
transitions. A better understanding of the spec-
trum and dynamics of cellular states in glioblas-
toma is thus critical for establishing faithful
models and advancing therapeutic strategies that
address the complexity of this disease.
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HIV PATHOGENESIS

HIV-1–induced AIDS in monkeys
Theodora Hatziioannou,1* Gregory Q. Del Prete,2 Brandon F. Keele,2 Jacob D. Estes,2
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Primate lentiviruses exhibit narrow host tropism, reducing the occurrence of zoonoses but
also impairing the development of optimal animal models of AIDS. To delineate the factors
limiting cross-species HIV-1 transmission, we passaged a modified HIV-1 in pigtailed
macaques that were transiently depleted of CD8+ cells during acute infection. During
adaptation over four passages in macaques, HIV-1 acquired the ability to antagonize
the macaque restriction factor tetherin, replicated at progressively higher levels, and
ultimately caused marked CD4+ T cell depletion and AIDS-defining conditions. Transient
treatment with an antibody to CD8 during acute HIV-1 infection caused rapid progression
to AIDS, whereas untreated animals exhibited an elite controller phenotype. Thus, an
adapted HIV-1 can cause AIDS in macaques, and stark differences in outcome can be
determined by immunological perturbations during early infection.

I
n humans, HIV-1 replicates well, but like other
primate lentiviruses, it encounters impediments
to replication in atypical host species (1–3). This
fact has limited the development of optimal
animal models of AIDS (4, 5). To delineate

the requirements for primate lentivirus to col-
onize a divergent host and to aid development of
better animal models of AIDS, we adapted HIV-
1 to replicate efficiently and cause AIDS in a
monkey species.

SCIENCE sciencemag.org 20 JUNE 2014 • VOL 344 ISSUE 6190 1401

RESEARCH | REPORTS




