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INTRODUCTION: Genetic interactions occur
when mutations in two or more genes com-
bine to generate an unexpected phenotype. An
extreme negative or synthetic lethal genetic
interaction occurs when two mutations, neither
lethal individually, combine to cause cell death.
Conversely, positive genetic interactions occur
when two mutations produce a phenotype that
is less severe than expected. Genetic interactions
identify functional relationships between genes
and can be harnessed for biological discovery
and therapeutic target identification. They may
also explain a considerable component of the
undiscovered genetics associated with human

diseases. Here, we describe construction and
analysis of a comprehensive genetic interac-
tion network for a eukaryotic cell.

RATIONALE: Genome sequencing projects are
providing an unprecedented view of genetic
variation. However, our ability to interpret ge-
netic information to predict inherited pheno-
types remains limited, in large part due to the
extensive buffering of genomes, making most
individual eukaryotic genes dispensable for
life. To explore the extent to which genetic in-
teractions reveal cellular function and contrib-
ute to complex phenotypes, and to discover the

general principles of genetic networks, we used
automated yeast genetics to construct a global
genetic interaction network.

RESULTS: We tested most of the ~6000 genes
in the yeastSaccharomyces cerevisiae for all possible
pairwise genetic interactions, identifying nearly
1 million interactions, including ~550,000 negative
and ~350,000 positive interactions, spanning

~90% of all yeast genes. Es-
sential genes were network
hubs, displaying five times
as many interactions as
nonessential genes. The set
of genetic interactions or
the genetic interaction pro-

file for a gene provides a quantitative mea-
sure of function, and a global network based
on genetic interaction profile similarity re-
vealed a hierarchy of modules reflecting the
functional architecture of a cell. Negative in-
teractions connected functionally related genes,
mapped core bioprocesses, and identified pleio-
tropic genes, whereas positive interactions often
mapped general regulatory connections asso-
ciated with defects in cell cycle progression or
cellular proteostasis. Importantly, the global
network illustrates how coherent sets of nega-
tive or positive genetic interactions connect
protein complex and pathways to map a func-
tional wiring diagram of the cell.

CONCLUSION: A global genetic interaction
network highlights the functional organization
of a cell and provides a resource for predicting
gene and pathway function. This network em-
phasizes the prevalence of genetic interactions
and their potential to compound phenotypes
associated with single mutations. Negative ge-
netic interactions tend to connect functionally

related genes and thus may be
predicted using alternative func-
tional information. Although less
functionally informative, positive
interactions may provide insights
into general mechanisms of ge-
netic suppression or resiliency.
We anticipate that the ordered
topology of the global genetic net-
work, in which genetic interac-
tions connect coherently within
and between protein complexes
and pathways, may be exploited
to decipher genotype-to-phenotype
relationships.▪
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A global network of genetic interaction profile similarities. (Left) Genes with similar genetic interaction
profiles are connected in a global network, such that genes exhibiting more similar profiles are located
closer to each other, whereas genes with less similar profiles are positioned farther apart. (Right) Spatial
analysis of functional enrichment was used to identify and color network regions enriched for similar Gene
Ontology bioprocess terms.
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We generated a global genetic interaction network for Saccharomyces cerevisiae,
constructing more than 23 million double mutants, identifying about 550,000 negative and
about 350,000 positive genetic interactions. This comprehensive network maps genetic
interactions for essential gene pairs, highlighting essential genes as densely connected
hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function,
including modules corresponding to protein complexes and pathways, biological
processes, and cellular compartments. Negative interactions connected functionally
related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas
positive interactions often mapped general regulatory connections among gene pairs,
rather than shared functionality. The global network illustrates how coherent sets of
genetic interactions connect protein complex and pathway modules to map a functional
wiring diagram of the cell.

G
enetic interaction networks highlight mech-
anistic connections between genes and
their corresponding pathways (1). Genetic
interactions can also determine the rela-
tionship between genotype and phenotype

(2) and may contribute to the “missing herita-
bility,” or the lack of identified genetic deter-
minants underlying a phenotypic trait, in current
genome-wide association studies (3, 4). To ex-
plore the general principles of genetic networks,

we took a systematic approach to map genetic
interactions among gene pairs in the budding
yeast, Saccharomyces cerevisiae. Synthetic ge-
netic array (SGA) analysis automates the com-
binatorial construction of defined mutants and
enables the quantitative analysis of genetic in-
teractions (1, 5). A positive genetic interaction
describes a double mutant that exhibits a fitness
that is greater than expected based on the com-
bination of the two corresponding single mu-

tants. Conversely, a negative or synthetic lethal/
sick genetic interaction is identified when a
double mutant displays a fitness defect that is
more extreme than expected (1, 5). Synthetic
lethal interactions are of particular interest be-
cause they can be harnessed to identify new
antibiotic or cancer therapeutic targets (6, 7).
In this study, we both expand upon our pre-
vious analysis of genetic interactions associated
with nonessential genes (1) and also character-
ize genetic interactions involving the majority of
essential genes to generate a global yeast ge-
netic interaction network.

A global and quantitative genetic
network for yeast

To map genetic interactions between nonessen-
tial yeast genes (8), we generated a genome-scale
library of natMX-marked deletion mutant query
strains and crossed them to an array composed
of the corresponding kanMX-marked deletion
mutant collection (9, 10). We also systematically
examined genetic interactions between pairs
of essential genes (9, 10). To do so, we generated
temperature-sensitive (TS) mutant alleles, carry-
ing mutations that typically alter coding regions.
Our essential gene mutant collection consists
of 2001 array and/or query strains harboring
TS alleles corresponding to 868 unique essen-
tial genes, with ~600 of these genes represented
by two or more TS alleles, including strains for
~140 essential genes that were not represented
in previous strain collections (11, 12). TS mu-
tants were screened at a semipermissive tem-
perature where cells were viable but partially
compromised for gene function and associated
with a reduced growth rate (8). We also con-
structed a set of essential gene query strains carry-
ing decreased abundance of mRNA (DAmP)
alleles, which can lead to reduced transcript
levels (13); however, only a fraction of DAmP
alleles (25%) compromised gene function enough
to affect cellular fitness (>5% fitness defect) and,
consequently, most DAmP alleles exhibited fewer
interactions compared with TS alleles of essen-
tial genes (fig. S1). Thus, TS alleles mediated the
majority of the essential gene genetic interac-
tions in our network, and the analyses described
exclude DAmP alleles, unless otherwise noted.
We constructed three different genetic inter-

action maps. First, the collection of nonessen-
tial deletion mutant query strains was screened
against the nonessential deletion mutant array
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Fig. 1. A global network of genetic interaction profile similarities. (A) The
essential similarity network was constructed by computing PCCs for ge-
netic interaction profiles (edges) of all pairs of genes (nodes) in the es-
sential genetic interaction matrix (ExE). Gene pairs with profile similarity of
PCC > 0.2 were connected and graphed using a spring-embedded layout
algorithm. Genes sharing similar genetic interaction profiles map prox-
imal to each other, whereas genes with less similar genetic interaction
profiles are positioned farther apart. (B) A genetic profile similarity network

for the nonessential genetic interaction matrix (NxN). (C) A global genetic
profile similarity network encompassing all nonessential and essential
genes was constructed from the combined NxN, ExE, and NxE genetic
interaction matrices. (D) The essential similarity network was annotated
using SAFE, identifying network regions enriched for similar GO biological
process terms, which are color-coded. (E) The nonessential similarity net-
work annotated using SAFE. (F) The global similarity network annotated
using SAFE.
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to generate a nonessential x nonessential (NxN)
network. Second, query strains carrying TS alleles
of essential genes were also screened against
the nonessential deletion mutant array to gen-
erate an essential x nonessential (ExN) network.
Finally, both nonessential deletion mutant and
TS query mutant strains were crossed to an ar-
ray of TS strains of essential genes to generate
an expanded ExN network and the first large-
scale essential x essential (ExE) genetic network.
Negative and positive genetic interactions

were quantified and false negative/positive rates
and data reproducibility were determined at de-
fined confidence thresholds (1) from analysis of
biological replicates and comparison of inter-
actions for a subset of gene pairs represented
on both mutant arrays (fig. S2) (8). A global ge-
netic interaction network resulting from the com-
bination of the NxN, ExN, and ExE networks was
generated from analysis of ~23 million double

mutants encompassing 5416 different genes. In
total, we identified nearly 1 million genetic inter-
actions, corresponding to ~550,000 negative and
~350,000 positive genetic interactions, including
~120,000 interactions between pairs of essential
genes (fig. S3). The current global network in-
volves ~90% of all yeast genes as query and/
or array mutants and is accessible from http://
thecellmap.org/costanzo2016/. The experiments
and analyses described here were from a repre-
sentative subset (>80%) of the complete data set
(data files S1 to S3).

A functional map of a cell

The genetic interaction profile of a particular
gene is composed of its specific set of negative
and positive genetic interactions. Genes belong-
ing to similar biological processes tend to share
common genetic interactions, and genes encod-
ing proteins that function together within the

same pathway or complex display
similar genetic interaction profiles
(fig. S4) (1). Thus, genetic interac-
tion profiles provide a quantitative
measurement of functional sim-
ilarity, and similarity networks
generated from the correlation of
large-scale genetic interaction pro-
files organize genes into clusters
that highlight biological processes
(1). We visualized networks of ge-
netic profile similarity (data file
S3) between essential genes (Fig.
1A), nonessential genes (Fig. 1B),
and a combined global similarity
network (Fig. 1C). Nodes in the sim-
ilarity networks represent genes,
whereas edges connect gene pairs
that share similar genetic inter-
action profiles (8).
When evaluated at the same

Pearson correlation coefficient (PCC)
threshold, the essential gene sim-
ilarity network (Fig. 1A) was more
than 25-fold more densely con-
nected compared with the corre-
sponding nonessential network
(Fig. 1B). For example, at PCC ≥
0.2, 3.12% of all tested gene pairs
were connected in the ExE sim-
ilarity network, whereas 0.12% of all
tested gene pairs were connected in
the NxN similarity network. More-
over, genes on the essential gene
similarity network often showed
a stronger functional relationship,
because genes that encode mem-
bers of the same essential protein
complex exhibited significantly
higher interaction profile similar-
ity than gene pairs belonging to
the same nonessential complex
(fig. S5). By evaluating the predic-
tive power of both essential and
nonessential genetic interaction
profiles (8), we found that essen-
tial gene interaction profiles pro-

vided higher-accuracy gene function predictions
across a diverse set of different Gene Ontology
(GO) biological processes (14), and this increased
accuracy was correlated with the fraction of essen-
tial genes annotated to specific bioprocesses (fig.
S6 and data file S4). Nevertheless, interactions involv-
ing either essential or nonessential genes can pre-
dict function. For example, interactions involving
nonessential genes were more predictive of vac-
uolar transport, peroxisome, and mitochondrial
function, whereas interactions involving essential
genes were more informative for predicting
chromosome segregation, mRNA splicing, and
proteolysis functions. Interestingly, functional
predictions for essential genes could also be
derived from interactions with nonessential
genes and vice versa. Nevertheless, optimal
functional prediction performance was achieved
with a global similarity network that com-
bined the majority of all nonessential and

SCIENCE sciencemag.org 23 SEPTEMBER 2016 • VOL 353 ISSUE 6306 aaf1420-3
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Fig. 2. The global genetic interaction profile sim-
ilarity network reveals a hierarchy of cellular func-
tion. (A) A schematic representation of a genetic
interaction profile–derived hierarchy. Genes with high-
ly correlated genetic interaction profiles (PCC > 0.4)
form small, densely connected clusters representing
specific pathways or protein complexes. At an inter-
mediate range of profile similarity (0.2 < PCC < 0.4),
sibling clusters representing distinct pathway or com-
plexes combine together into larger biological process–
enriched clusters. At a lower range of profile similarity
(0.05 < PCC < 0.2), bioprocess-enriched clusters, in
turn, combine together to form larger clusters cor-
responding to different cell compartments. The gray-
white scale bar illustrates enrichment of sibling clusters
for the same set of terms from the indicated func-
tional standard. See also fig. S7. (B) The genetic net-
work hierarchy visualized using SAFE analysis, which
identified regions in the global similarity network en-
riched for specific cellular compartments, biological
processes, or protein complexes.
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essential protein coding genes in the S. cerevisiae
genome.
To functionally annotate the global genetic

profile similarity maps (Fig. 1, A to C), we ap-
plied spatial analysis of functional enrichment
(SAFE), which identifies dense network regions
associated with specific functional attributes (15).
Implementing SAFE with 4373 biological pro-
cess terms from Gene Ontology (GO) (14), we de-
tected gene clusters in each similarity network
that were enriched for unique sets of related GO
terms (Fig. 1, D to F, and data file S5). Gene clus-
ters enriched for GO terms related to cell polarity,
protein degradation, and ribosomal RNA (rRNA)
processing were specifically detected in the essen-
tial gene similarity network (Fig. 1D), whereas the
nonessential gene similarity network identified
clusters enriched for mitochondrial and peroxi-
somal functions (Fig. 1E). The global similarity
network provided a more organized and func-
tionally comprehensive view of cellular function,
emphasizing the importance of mapping gen-
etic interactions that involve both nonessential
and essential genes (Fig. 1F). SAFE identified 487
significantly enriched GO bioprocess terms that
mapped to 17 unique network regions and cov-
ered 1343 genes on the global network (Fig. 1F).
The subsets of enriched GO bioprocess terms as-
sociated with each densely connected network
region in turn revealed genes involved in core
cellular functions and defined an informative
subset of GO bioprocess terms associated with
these functions (data file S5).

Genetic profile similarities map a
hierarchy of gene and cellular function

The relative positioning of biological process clus-
ters appeared to reflect shared functionality be-
cause distinct, but related, processes—such as
DNA replication and repair and mitosis and chro-
mosome segregation—were positioned next to
each other in the global similarity network (Fig.
1F). To explore this functional organization more
rigorously, we considered only those genes with
at least one highly similar gene partner, re-
sulting in a set of 515 nonessential and 421 es-
sential array mutants (8). We then applied an
unsupervised clustering approach to construct
a genetic interaction–based hierarchy for this sub-
set of genes. The base of the resultant hierarchy
was composed of numerous, small clusters of genes
with highly similar genetic interaction profiles,
whereas the top of the hierarchy was composed
of a small set of larger clusters of genes with lower
profile similarity (Fig. 2A, fig. S7, and data file S6).
To examine functional relationships between

clusters identified at different hierarchical lev-
els, we assessed whether distinct “sibling” clus-
ters, resolved at one level of the hierarchy and
combined together at a higher level to generate
a unique and larger “parent” cluster, shared en-
richment for the same annotations from a par-
ticular functional standard (8). Indeed, sibling
clusters identified at a relatively high level of
profile similarity (e.g., PCC > 0.4), which often
corresponded to distinct protein complexes,
shared enrichment for the same GO biological

aaf1420-4 23 SEPTEMBER 2016 • VOL 353 ISSUE 6306 sciencemag.org SCIENCE

Fig. 3. Genetic interaction profile similarity subnetworks.Genes belonging to the indicated biological
process–enriched clusters were extracted from the global network and laid out using a spring-embedded
layout algorithm. Subnetworks were annotated using SAFE to identify network regions enriched for specific
protein complexes. (A) Protein complexes localized within the protein degradation, mitosis and chromosome
segregation, and DNA replication and repair, enriched bioprocess clusters shown in Fig. 1F. (B) Protein
complexes localized within the transcription and chromatin organization and mRNA processing-enriched
bioprocess clusters shown in Fig. 1F. (C) Protein complexes localized within the glycosylation, protein folding/
targeting, cell wall biosynthesis, and vesicle traffic–enriched bioprocess clusters shown in Fig. 1F. (D) Protein
complexes localized within the multivesicular body (MVB) sorting and pH-dependent signaling, cell polarity
and morphogenesis, and cytokinesis-enriched bioprocess clusters shown in Fig. 1F.
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process annotations (data file S6). For exam-
ple, five sibling clusters with distinct pathway/
complex annotations, including the homologous
DNA repair pathway and the ORC (origin recog-
nition complex), combined together into a sin-
gle parent cluster, and all these siblings are
enriched for GO biological process terms such
as “DNA repair,” “DNA metabolic process,” and
“response to DNA damage stimulus,” which re-
flects a general role shared by the collective gene
set in the regulation of DNA synthesis and repair
(data file S6).
However, sibling clusters detected at an inter-

mediate range of profile similarity (0.2 < PCC <
0.4), which combined into a relatively smaller
set of larger parent clusters at a lower range of
profile similarity (0.05 < PCC < 0.2), did not
share enrichment for the same GO biological
process, pathways, or protein complex annota-
tions. Instead, these clusters were enriched for
genes whose products function in the same cell
compartment (Fig. 2A, fig. S7, and data file S6).
For example, one of the 10 parent clusters formed
near the top of the hierarchy was composed of
six sibling clusters, and, although each individ-
ual sibling cluster was enriched for unique GO
biological process terms including “chromosome
segregation,” “transcription from RNA polymer-
ase II promoter,” or “DNA repair,” none of the
sibling clusters were enriched for the same GO
biological process terms. Instead, all 10 sibling
clusters were enriched for gene products that
exhibit nuclear localization patterns (data file
S6). As observed previously (16), this indicates
that novel functional organization is embedded
within large-scale, unbiased data sets, which may
not be captured completely by functional stan-
dards, including GO as it is currently organized
(14). Thus, a global genetic interaction network,

created on the basis of a single fitness phenotype,
quantifies functional relatedness to organize genes
into modules corresponding to protein complexes
and pathways, which combine to define specific
biological processes. These biological processes, in
turn, group together into larger modules repre-
senting specific cellular compartments, thereby
revealing a hierarchical model of cell function.
The functional hierarchy revealed by genetic

interaction profiles can also be visualized on the
global similarity network (Fig. 2B). Applying SAFE
with a protein localization standard (17), we de-
tected 14 network regions enriched for genes
whose products localize to 11 different subcellular
compartments (Fig. 2B, Cell Compartments). For
example, bioprocess clusters such as DNA repli-
cation and repair, mitosis and chromosome
segregation, nuclear-cytoplasmic transport, and
transcription and chromatin organization (Fig.
2B, Bioprocesses and data file S5) combined
into a single module encompassing genes localized
to the cell nucleus (Fig. 2B, Cell Compartments).
At a higher level of functional resolution, SAFE
identified 28 gene clusters corresponding to 123
specific protein complexes (Fig. 2B, Complexes/
Pathways and data file S5). Functional relationships
between protein complexes were also resolved
in greater detail by extracting biological process-
enriched clusters from the global network and vi-
sualizing them in isolation (Fig. 3 and data file S5).

Quantifying genetic pleiotropy

The ability of an organism to tolerate environ-
mental and genetic variation may be dependent
on phenotypic capacitors, a class of genes whose
inactivation may increase phenotypic variation
among genetically diverse individuals in a pop-
ulation (18). Hsp90, the canonical capacitor, is a
molecular chaperone controlling numerous sig-

naling pathways and thus is considered a multi-
functional or pleiotropic gene (18). Identifying
other pleiotropic genes may uncover novel capac-
itors and provide insight into the genetic basis
of phenotypic robustness.
We expect that a pleiotropic gene involved

in diverse functions should show a genetic in-
teraction profile that partially overlaps with
genes representative of its functional spectrum.
To quantify pleiotropy, we focused on genes with
a high degree of negative genetic interactions
and developed a pleiotropy score that measured
the functional breadth of genetic interaction
profiles associated with these genes (8). Genes
encoding Hsp90 (hsc82D hsp82-5001 TS double-
mutant query strain) (data file S1); IRA2, a neg-
ative regulator of RAS signaling; and RSP5, an
E3 ubiquitin ligase, ranked among the most high-
ly pleiotropic genes observed (data file S7). Other
highly pleiotropic genes (top 30% pleiotropy scores)
included those with proteostasis or signaling roles,
as well as select genes with roles in fundamental
cellular functions, such as translation, RNA pro-
cessing, vesicle trafficking, lipid and acetyl Co-A
metabolism (Fig. 4A). Because they share genetic
interactions with many functionally diverse genes,
high pleiotropy genes were often positioned out-
side the functionally enriched clusters, scattered
in the sparser regions of the global network (Fig.
4A). In contrast, high-degree but low-pleiotropy
genes (lowest 30% pleiotropy scores), which are
functionally specific, were positionedmore frequent-
ly in densely connected regions of the global sim-
ilarity network (P < 10−5; Gene Set Enrichment
Analysis) (8).

Predicting novel gene function

The location of numerous previously uncharacter-
ized genes, either within or in close proximity to

SCIENCE sciencemag.org 23 SEPTEMBER 2016 • VOL 353 ISSUE 6306 aaf1420-5

.

Fig. 4. Using network connectivity to explore gene function. (A) Highly connected hub genes identified either as pleiotropic (blue nodes), or functionally
specific (yellow nodes), are highlighted on a schematic representation of the global similarity network. Examples of high (blue text) and low (yellow text)
pleiotropy genes, grouped based on their general function, are shown. (B) Poorly characterized genes that localize within, or in the vicinity of, a specific biological
process–enriched cluster on the global similarity network. An estimated network position is indicated (*) for genes that are not present on the global similarity network
because their genetic interaction profile similarity to other genes does not exceed a PCC > 0.2. Network position for these genes was estimated as described (8).
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Fig. 5. Validating functional predictions for IPA1 and the MTC pathway.
(A) A genetic interaction profile similarity subnetwork for the uncharacterized
essential gene, IPA1 (yellow node), extracted from the transcription and chromatin
organization enriched biological process cluster. (B) Polyadenylation profiles for a
representative gene, RTG2, generated from genome-wide sequencing of mRNA
purified from a wild-type (WT) strain and strains carrying TS mutations of PCF11,
CFT2, or IPA1. The horizontal arrow indicates the orientation of the RTG2 open
reading frame; the vertical arrows indicate themutant, increased aberrant, 3′mRNA
cleavage and polyadenylation. (C) A genetic interaction profile similarity subnetwork
for MTC2, MTC4, MTC6, CSF1, DLT1, and MAY24 genes (yellow nodes) extracted
from the network region in the vicinity of the cell polarity and morphogenesis bio-
logical process cluster. (D) The MTC pathway genetic interaction network. Nodes
are grouped according to genetic interaction profile similarity and edges represent
negative (blue) and positive (yellow) interactions (genetic interaction score, |e| >
0.08, P < 0.05). (E) Distribution of ARO1 negative (blue) and positive (yellow)
genetic interactions (|e| > 0.08, P < 0.05) (gene pairs that failed to meet the

threshold for interactions are colored gray). Functions enriched among genes that
displayed an extreme negative interaction with ARO1 are indicated, and a subset
of these genes and where they are located within the SGA score distribution is
shown. Closed circles indicate members of the MTC pathway, and arrows indicate
amino acid permease encoding genes. (F) (Top) Representative cell images illus-
trating Bap2-GFP (green fluorescent protein) localization inWT,mtc2D, andmay24D
deletion mutant strains. (Bottom) Vacuolar intensity (total GFP signal in the vacuole/
vacuolar area) and percentage of total cellular GFP present at the cell periphery (cell
periphery GFP/total cellular GFP signal) were quantified for WTcells and MTC path-
waymutants. Error bars indicate standard deviation from three replicate experiments.
(J) Cellular uptake of 14C-labeled phenylalanine in WTand deletion mutant strains.
Error bars indicate standard deviation from three replicate experiments. (H) (Top)
Metabolite levels for the indicated mutants were analyzed by full-scan liquid
chromatography–mass spectrometry.The levels of selected metabolites are pres-
ented as log2 ratios relative to wild type cells. (Bottom) Schematic diagram illus-
trating aromatic amino acid and de novo NAD+ biosynthesis pathways.
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functionally enriched regions of the genetic pro-
file similarity network, allows us to predict func-
tions for these genes (Fig. 4B) (8). Notably, while
most essential genes are relatively well studied,
our network uncovered a role for a previously
uncharacterized essential gene, YJR141W, which
we named IPA1 (important for cleavage and poly-
adenylation), in the highly conserved process of
mRNA 3′-end processing and polyadenylation.
IPA1 shares many genetic interactions in common
with genes encoding members of the cleavage/
polyadenylation factor (CPF) and cleavage factor
IA (CF IA) protein complexes (Figs. 4B and 5A),
which, along with HRP1, are essential for mRNA
3′ end processing (19). We also found that Ipa1
physically interacted with CPF complex members
Mpe1 and Ysh1 (data file S8) (8), further support-
ing a role for IPA1 in this process. Indeed, as
shown previously for TS mutants in components
of CF IA and CPF complexes (20), such as pcf11
and cft2 TS mutants, an ipa1 TS mutant was im-
paired for in vitro mRNA cleavage and polyade-
nylation (fig. S8) and showed widespread defects
in mRNA processing accuracy and efficiency, with
a significant bias toward the use of downstream
polyadenylation sites (P < 2 × 10−16; Wilcoxon
rank sum) (Fig. 5B and fig. S8) (8).
Six poorly characterized genes—MTC2, MTC4,

MTC6, CSF1, DLT1, and YPR153W—localized in
the vicinity of the cell polarity and morphogen-
esis cluster on the global network (Fig. 4B) and
displayed highly similar genetic interaction pro-
files, suggesting that they work together as a
novel functional module (Fig. 5C). Interestingly,
all of these genes were identified as important
for growth in high-pressure and cold environ-
ments (21). Thus, we called this module the MTC
pathway and named YPR153W as MAY24 (ge-
netic interaction profile similarity to MTC anno-
tated yeast genesMTC2 andMTC4).MTC2,MTC4,
and MTC6 mutants were previously shown to
enhance the mutant phenotype associated with
perturbation of CDC13, which controls the main-
tenance of telomere capping (22). We found that
the MTC pathway genes showed strong negative
interactions with protein-trafficking genes, as well
as aromatic amino acid biosynthesis genes ARO1
and ARO2 (Fig. 5D and fig. S9). Because pathway
components often share phenotypes with their
target genes, a genetic interaction profile that con-
tains members of a particular pathway may also
identify potential targets of the same pathway.
For example, the ARO1 genetic interaction profile
revealed strong negative interactions with genes
involved in amino acid metabolism, the entire
MTC pathway, and the aromatic amino acid trans-
porters BAP2 and TAT1 (Fig. 5E and fig. S9),
suggesting that the MTC pathway may control
amino acid metabolism or affect trafficking of
Bap2 and Tat1 permeases. Indeed, mutations
of MTC pathway genes resulted in Bap2 mis-
localization (Fig. 5F and fig. S9) and a defect in
phenylalanine uptake, resembling that of strains
deleted for genes encoding amino acid transporters,
including BAP2, TAT1, and GAP1 (Fig. 5G) (8).
Furthermore, unbiased metabolomics analysis
revealed that the MTC pathway mutants exhib-

ited elevated levels of kynurenine biosynthetic
pathway metabolites, precursors of nicotinamide
adenine dinucleotide (oxidized form) (NAD+)
(Fig. 5H) (8). Previous studies showed that defects
in kynurenine biosynthesis suppressed cdc13-1
TS mutants, suggesting that elevated NAD+ lev-
els inhibit telomere capping (23). Thus, the global
genetic interaction network traced functional
connections whereby defects in MTC pathway-
dependent protein trafficking alter aromatic amino
acid homeostasis, which appears to modulate
steady-state levels of kynurenine biosynthetic
pathway metabolites, linking cell polarity to telo-
mere capping through altered NAD+ levels.

Genetic interaction network connectivity

Genetic interaction profiles connect a particular
gene to other genes through both negative and
positive interactions. Although the average gene
participated in ~100 negative interactions (2%
of genes tested) and ~65 positive interactions (1%
of genes tested), when assessed at an interme-
diate confidence threshold (8), a wide range of
connectivity exists in the genetic interaction net-
work (fig. S10 and data file S9). For example, the
10% most connected genes (i.e., high interaction
degree genes or hub genes) in the genetic inter-
action network participated in 3.5-fold more ge-
netic interactions than the average gene. More
specifically, negative interaction hubs had an
average degree of 340 negative interactions, and
the average positive interaction hub displayed
200 positive interactions. In general, essential
genes participated in ~5-fold more negative and
positive interactions than nonessential genes,
confirming previous estimates (Fig. 6A) (24).
As observed previously (1), fitness defects as-

sociated with both deletion alleles of nonessen-
tial genes and TS alleles of essential genes were
highly correlated with the degree of genetic in-
teraction (figs. S11 and S12, table S1, and data file
S10). In the global network, genetic interaction
hubs tended to encode conserved, multifunctional,
highly expressed, and abundant proteins that ex-
hibit many physical interactions and also partici-
pated in numerous chemical-genetic interactions
(data file S9 and table S1). Genes encoding proteins
involved in specific biochemical functions, or those
that contain specific functional domains, such as
an SH3 (SRC homology 3) protein-protein inter-
action domain, were also associated with a high-
er number of genetic interactions (figs. S13 and
S14). In the nonessential genetic interaction
network (NxN), negative and positive interaction
hubs were enriched for biological processes in-
cluding chromatin organization, transcription,
and vesicle trafficking (data file S11). In the es-
sential genetic network (ExE), negative interaction
hubs were relatively uniformly distributed across
all bioprocesses, whereas positive interaction hubs
were specifically enriched for proteostasis-related
bioprocesses (data file S11).
Genes that exhibited relatively few genetic

interactions were also associated with specific
features (figs. S11 to S14, table S2, and data file
S10). For example, ATP-binding cassette trans-
porters, which belong to functionally redun-

dant gene families and thus are extensively
buffered, exhibited fewer genetic interactions
(figs. S11 to S14 and table S2). Interestingly,
genes with the lowest interaction degree (lowest
20%) (data file S9) were often associated with
more deleterious single-nucleotide polymorphisms
(SNPs), exhibited a higher ratio of nonsynonymous
to synonymous nucleotide substitutions (dN/dS),
and displayed high expression variance across dif-
ferent genetic backgrounds and environments.
This suggests that these genes are under reduced
evolutionary constraints and subject to condition-
specific regulation (table S2 and figs. S11 and S12).
About 1000 genes (~20%), the majority of which
are nonessential genes, displayed few genetic inter-
actions and had profiles that generally displayed a
relatively low level of functional information, sug-
gesting that the connectivity for some genes will
only be revealed under different environmental
or genetic conditions. The functional, physiolog-
ical, and evolutionary properties associated with
genetic interaction frequency should predict ge-
netic network connectivity and candidate genes
that may serve as important genetic modifiers in
other organisms, including humans (25).

Negative and positive genetic
interactions of essential and
nonessential genes

The global genetic interaction network, encom-
passing the majority of both nonessential and
essential genes, enabled a comprehensive com-
parative analysis with other functional informa-
tion (8). Both nonessential and essential genetic
interactions were predictive of functionally re-
lated gene pairs (Fig. 6, B and C, and fig. S15). In
particular, negative interactions among essential
genes showed a striking overlap with protein-
protein interactions (Fig. 6C and fig. S15). For
example, 50% of essential gene pairs whose
products physically interact also share a negative
interaction, representing a ~10-fold enrichment
for protein-protein interactions among essential
genes displaying negative genetic interactions.
Similarly, 63% of gene pairs annotated to the
same essential protein complex were connected
by a negative genetic interaction, representing
a ~15-fold enrichment for cocomplexed pairs
among essential genes connected by negative
interactions. In fact, individual negative inter-
actions were as informative as genetic interac-
tion profile similarity for predicting membership
to the same essential pathway or complex, a prop-
erty that does not hold for nonessential genes (fig.
S16). This observation highlights the reduced abil-
ity of a cell to tolerate multiple partial loss-of-
function mutations in the same essential pathway
or complex (Fig. 6C and fig. S15).
Consistent with previous observations (1), posi-

tive genetic interactions between nonessential
genes also overlapped with protein-protein inter-
actions, albeit to a lesser extent (0.5%, 3.7-fold
enrichment) (Fig. 6C and fig. S15). This reflects
that simultaneous perturbation of two genes
encoding members of the same nonessential
protein complex often shows a fitness defect
resembling the corresponding single mutants.
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In contrast, we did not detect significant overlap
between the positive interactions of essential genes
and other molecular or functional relationships,
including physical interactions (Fig. 6, B and C,
and fig. S15). The lack of a functional signal could
not be explained by differences in data quality
because replicate analysis confirmed that SGA-
derived positive and negative interactions showed
similar levels of reproducibility (fig. S2). Further-
more, members of the same essential protein com-
plex or different alleles of the same essential gene
often showed similar positive interaction profiles

(fig. S17). Thus, while negative interactions iden-
tified clear functional relationships between genes,
positive interactions among partial loss-of func-
tion alleles of essential genes represent a different
type of relationship that is not captured by other
large-scale data sets or functional standards.

Functional distribution
of genetic interactions within
and between bioprocesses

We further examined the functional distribution
of genetic interactions through the enrichment

for negative and positive interactions within
and between biological processes (Fig. 1F and
data file S6) (8). Negative genetic interactions
were significantly enriched (P < 0.05, hyper-
geometric) among genes belonging to the same
biological process in both the nonessential (NxN)
and essential (ExE) genetic interaction networks
(Fig. 6D, on-diagonal). Negative interactions were
also enriched between deletion alleles of non-
essential genes in different biological processes
(Fig. 6D, off-diagonal). In contrast, negative inter-
actions between TS alleles of essential genes,

aaf1420-8 23 SEPTEMBER 2016 • VOL 353 ISSUE 6306 sciencemag.org SCIENCE

Fig. 6. Negative and positive genetic interactions connecting nonessential
and essential genes. (A) The network density (observed interactions/total
gene pairs screened) of negative (blue) and positive (yellow) genetic interactions,
expressed as a fraction of all tested gene pairs, associated with nonessential and
essential genes, at a defined threshold (genetic interaction score, |e| >0.08, P <
0.05). Error bars indicate the standard deviation across multiple samplings of the
alleles for essential genes, where each gene is represented by a single, randomly
selected allele in each sampling. (B) Plots of precision versus recall [number of true
positives (TPs)] for negative (blue) and positive (yellow) interactions for nonessential
and essential genes, as determined by our genetic interaction score (|e| >0.08, P <
0.05). TP interactions were defined as those involving gene pairs coannotated to a
gold standard set of GO terms. The precision and recall values were calculated as
described (8). (C) Fold enrichment for colocalized, coexpressed, or physically
interacting genes among negative (blue) and positive (yellow) genetic interactions

connecting pairs of nonessential or essential genes. (D) Network density (observed
interactions/total gene pairs screened) of genetic interactions within and across
biological processes. The fraction of screened nonessential and essential gene
pairs exhibiting negative or positive interactions, as determined by our genetic
interaction score (|e| >0.08, P < 0.05), wasmeasured for the 15 gene sets enriched
for specific biological processes, as defined in Fig. 1F. Node size reflects the
fraction of interacting gene pairs observed for a given pair of biological pro-
cesses. Dark blue and dark yellow nodes indicate the frequency of interaction
that is significantly above random expectation. Light blue and light yellow
nodes represent a frequency of interaction that is not significantly higher than
random expectation. Nodes on the diagonal represent the frequency of inter-
actions among genes belonging to the same biological process. Nodes off
the diagonal represent the frequency of interactions between different bio-
logical processes.
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despite higher abundance (Fig. 6A), were biased
toward gene pairs in the same biological pro-
cesses (Fig. 6D, on-diagonal) and were rarely
enriched between genes involved in different
biological processes (Fig. 6D, off-diagonal). Al-
though these trends could reflect the different
genetic perturbations used to interrogate non-
essential and essential genes, negative inter-
actions among essential genes highlight a core
set of cellular bioprocesses, and nonessential
genes appear to mediate connections between
these bioprocesses.
While nonessential genes involved in the same

biological process were modestly enriched for pos-
itive interactions, we failed to observe a similar
enrichment for positive interactions among func-
tionally relatedessential genes (Fig.6D,on-diagonal).
Instead, positive interactions tended to connect
essential genes with roles in highly distinct bio-

logical processes. In particular, we observed sig-
nificant enrichment for positive interactions that
connected essential genes with nuclear-related
functions to essential genes required for vesicle
traffic–dependent functions (Fig. 6D and fig. S17).

The architecture of negative
interactions within the genetic
network hierarchy

To explore the functional distribution of genetic
interactions in more detail, we examined where
genetic interactions occurred within the genetic
network hierarchy of gene function derived from
profile similarities. Specifically, we assessed how
frequently negative interactions connected a pair
of genes belonging to the same cluster within
the hierarchy of genetic interaction profiles (Fig.
2A), and we examined clusters corresponding to
either a cellular compartment, biological process,

or pathway/complex (Fig. 7A) (8). The density (i.e.
the number of observed genetic interactions rel-
ative to the total number of gene pairs screened)
of negative interactions, among genes in both
the nonessential (NxN) and essential (ExE) genetic
interaction networks, increased with the functional
specificity of a given cluster. Accordingly, genes
within a cluster enriched for specific pathways
or complexes were connected by negative inter-
actions more often than genes in the same bio-
logical process–enriched cluster, which, in turn,
were more frequently connected by negative in-
teractions than genes belonging to a cluster en-
riched for a particular cell compartment (Fig. 7B).
For example, essential genes that fall into a clus-
ter within the set that was enriched for complexes/
pathways (PCC 0.4 to 0.8) were connected by a
negative interaction with a relatively high density
(60 to 90%), but they were rarely connected by a

SCIENCE sciencemag.org 23 SEPTEMBER 2016 • VOL 353 ISSUE 6306 aaf1420-9
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Fig. 7. Mapping negative and positive interactions across the genetic
network–based functional hierarchy. (A) Schematic representation of the
genetic network–based functional hierarchy illustrating interactions between
genes within the same complex, biological process, or cellular compartment, as
well as distant interactions that span different cellular compartments. (B) The
network density of genetic interactions between of genes in the same cluster, at a
given level of profile similarity (PCC) in the genetic network hierarchy for negative
(blue) or positive (yellow) genetic interactions (genetic interaction score, |e| >
0.08, P < 0.05). Dashed lines indicate the PCC range within which clusters in the
genetic network hierarchy were enriched for cell compartments, bioprocesses,
and protein complexes. (C) The functional distribution of all negative (blue) and
all positive (yellow) interactions (|e| > 0.08, P < 0.05) among genes in the

genetic network hierarchy. The percentage of all interactions connecting non-
essential gene pairs and essential gene pairs in the same clusters corre-
sponding to a cell compartment, bioprocess, or complex/pathway is shown.The
combined fraction of functionally related interactions (i.e., interactions connect-
ing genes in the same compartment, bioprocess, complex or pathway) is
also indicated (*). (D) The percentage of negative (blue) and positive (yellow)
interactions within a specified genetic interaction score (e) range that connects
genes belonging to the same cluster at the indicated level of the genetic
network–based hierarchy. Different shades of blue and yellow correspond to
levels of functional relatedness shown in (C). The white area corresponds to
the fraction of interactions that connect genes in different cellular compart-
ments (i.e., distant).
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positive interaction (Fig. 7B). In total, 43% of non-
essential and 56% of essential gene pairs con-
nected by negative interactions shared some
degree of functional relatedness (Fig. 7C).
The magnitude of a given negative interac-

tion was also associated with the extent of func-
tional similarity shared between genes (Fig. 7D).
For both nonessential and essential genetic inter-
actions, stronger interactions tended to connect
genes with closer functional relationships (Fig.
7D). Thus, on the basis of the strength of nega-
tive genetic interaction, we can predict whether
two genes share an intimate relationship and
possibly function in the same pathway or com-
plex. For example, members of the conserved
endoplasmic reticulum (ER) membrane protein
complex—including EMC1, EMC2, and EMC6,
which play a role in phospholipid transfer from
the ER to mitochondria to facilitate phosphatidyl-
ethanolamine biosynthesis (26)—showed strong
negative genetic interactions (genetic interaction
score < –0.65) with a previously uncharacterized
essential gene, YNL181W, suggesting a role for
this gene in lipid metabolism. Indeed, YNL181W
encodes a putative oxidoreductase that localizes
to the ER (27) and, consistent with defective mem-
brane function, ynl181w hypomorphic mutants
showed altered sensitivities to numerous bioactive
compounds (fig. S18) (8). We named this gene
PBR1 (potentiates bioactive compound response)
to highlight its role in xenobiotic sensitivity.

The architecture of positive interactions
within the genetic network hierarchy

Positive interactions among nonessential genes
exhibited similar, albeit weaker, trends, where
the density of interactions increased gradually
with the functional specificity of hierarchy-
derived clusters (Fig. 7B) and the magnitude of
nonessential positive interactions was predictive
of nonessential pathway or complex member-
ship (Fig. 7D). In contrast, the density of
positive interactions detected in the essential
network was not related to functional specific-
ity. In fact, the most distantly related essential
gene pairs were more frequently connected by
positive interactions than gene pairs mapping
to the same biological process-level clusters (Fig.
7B). The majority of positive interacting gene
pairs in both the essential (ExE, 78%) and non-
essential (NxN, 75%) genetic interaction networks
occurred between distantly connected genes
whose products appeared to function in differ-
ent cell compartments (Fig. 7C). Moreover, we
did not observe a relationship between func-
tional similarity and the magnitude of positive
interactions between essential gene pairs (Fig.
7D). Thus, positive interactions between essen-
tial genes generally appear to reflect more func-
tionally distant relationships.

Genetic interactions within
and between protein complexes

Consistent with previous findings (1, 5, 28, 29),
we found that protein complexes exhibited highly
organized patterns of genetic interactions. For
example, many protein complexes tested (60

of 141, 43%) were enriched (P < 0.01, hyper-
geometric) for genetic interactions within the
set of protein complex–encoding genes and were
biased for a single type of interaction, either
negative or positive, highlighting the coherent
nature of genetic interactions shared among
genes encoding members of the same complex.
The type of interaction observed within protein
complexes depended on essentiality. For exam-
ple, complexes composed primarily of nonessen-
tial genes (>75% nonessential genes) (data file
S12) were more often enriched for positive (21%;
20 of 97 complexes) compared with negative
(5%; 5 of 97 complexes) interactions among their
members (Fig. 8A and data file S13). In contrast,
most essential protein complexes (>75% essential
genes; data file S12) were enriched for negative
interactions among their members (82%; 35 of
44 complexes). Notably, none of the essential com-
plexes in our data set were enriched for positive
interactions (Fig. 8A and data file S13).
The genetic interactions occurring within pro-

tein complexes can even resolve the structural
organization of large, multisubunit complexes.
For example, although proteasome genes tend
to be connected by negative genetic interactions,
genes encoding components of the same sub-
unit (e.g., within 19S or within 20S) interact more
frequently with one another than genes belong-
ing to different subunits (between 19S and 20S)
(fig. S19). Phenotypic differences between protea-
some subunits were also supported by chemical-
genetic interactions observed in yeast (fig. S19)
(30), as well as in Drosophila melanogaster cul-
tured cells (fig. S20 and data file S14) (8), sug-
gesting that the topology of genetic networks
connecting genes within protein complexes by
uniform sets of genetic interactions is conserved
in higher eukaryotes.
We also examined the topology of genetic in-

teractions occurring between protein complexes
and found a large number of complex-complex

pairs that were both enriched for genetic inter-
actions (P < 0.001, hypergeometric) and strongly
biased toward either negative or positive inter-
actions (8). More complex-complex pairs were
connected by coherent sets of negative than
positive interactions (Fig. 8B and data file S13).
For example, 4% of all nonessential pairs of pro-
tein complexes tested (293 of 6899) were con-
nected by negative interactions, whereas positive
interactions connected less than 2% of non-
essential complexes (130 of 6899). Similarly, 5%
(74 of 1597) of all essential complex pairs in our
data set were connected by negative interactions,
whereas less than 2% (29 of 1597) of essential
protein complex pairs shared positive interac-
tions (Fig. 8B and data file S13). Nonetheless, we
observed hundreds of instances of both coher-
ent negative (470) and positive (192) interactions
connecting pairs of essential and nonessential
complexes, emphasizing the highly organized
topology of genetic interaction networks (Fig.
8B and data file S13).

Functional wiring diagrams
of protein complexes

Extracting all genetic interactions for specific
protein complexes generated functional wiring
diagrams that revealed the set of genes, path-
ways, and bioprocesses, modulated by mutation
of a particular complex (Fig. 9, A and B). For
example, coherent sets of negative interactions
involving the ORC, which specifies sites of ini-
tiation of DNA replication throughout the ge-
nome (31), linked functionally related complexes,
including the MCM (mini-chromosome mainte-
nance) and the GINS (Go, Ichi, Ni, San) com-
plexes (Fig. 9A), both of which participate in the
initiation of DNA replication (32, 33). In another
example, negative interactions associated with
the 19S proteasome highlighted diverse func-
tions that are particularly important when
proteasome activity is compromised (Fig. 9B),
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Percentage of protein complex pairs Percentage of protein complex pairs

Fig. 8. Genetic interactions within and between protein complexes. (A) The percentage of nonessential
and essential complexes whose members were enriched for genetic interactions with each other and biased
(i.e., coherent) for either mostly negative (blue) or mostly positive (yellow) interactions. (B) The percentage
of nonessential-nonessential, essential-essential, or essential-nonessential complex-complex pairs found to
be enriched for genetic interactions and biased (i.e., coherent) for either mostly negative (blue) or mostly
positive (yellow) interactions. Black dashed lines indicate the background rate of coherent genetic inter-
action enrichment within individual complexes or between pairs of protein complexes. Error bars indicate
the standard deviation across multiple samplings of different alleles for the same essential genes, where
each gene is represented by a single, randomly selected allele in each sampling.
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including interactions with genes encoding the
APC (anaphase-promoting complex), which tar-
gets cell cycle proteins for degradation to promote
exit from mitosis (34). Interestingly, essential
genes that showed negative interactions with
the proteasome were enriched for multidomain
proteins, suggesting that TS alleles may perturb
folding of more complex proteins, resulting in a
greater dependence on proteasome activity in
mutants (fig. S21).

Positive interactions among
essential genes reflect general
regulatory mechanisms

Protein complexes involved in proteostasis, in-
cluding several chaperones and the proteasome,
exhibited among the strongest enrichment for
positive genetic interactions, especially in the
essential gene network (Fig. 9C, fig. S22, and data
file S15). Positive genetic interactions connected
the proteasome and other proteostasis-related
complexes to genes involved in various functions,
including vesicle trafficking and transcription
(Figs. 6D and 9B and fig. S23). Because the pro-
teasome plays a direct role in controlling pro-
tein turnover, we hypothesized that a subset of
its positive interactions may reflect genetic sup-
pression through the stabilization of a mutant
protein (35). Indeed, we further tested a subset
of these positive interactions (8) and, based on this
analysis, we estimated that ~30% of proteasome-
positive interactions represent genetic suppres-
sion, where a fitness defect associated with a
hypomorphic TS allele of an essential gene is sup-
pressed by a second mutation in a proteasome-
encoding gene (table S3, fig. S24, and data file
S16). In total, 16% of positive interactions with
essential genes appear to be associated with
proteostasis. In a similar regulatory relation-
ship, positive interactions were also enriched
between genes involved in mRNA decay and
essential gene DAmP alleles (13), which often
affect mRNA stability via disruption of their 3′
untranslated region (fig. S24).
Interestingly, a subset of protein complexes,

in addition to being enriched for positive inter-
actions (Fig. 9C), also exhibited more positive
interactions compared with negative interac-
tions with essential genes (Fig. 9D and data file
S15). The positive interactions of these biased
complexes were also more functionally diverse
compared with their negative interactions. For
example, ORC subunits were connected by co-
herent sets of positive interactions to genes with
roles in several different functions, including
members of the ER-associated translocon com-
plex (Fig. 9A). The ORC-translocon connection
reflects enrichment for cross-compartment posi-
tive interactions observed between genes encoding
essential, nuclear, and vesicle traffic-dependent
functions (Fig. 6D).
Protein complexes with a positive interaction

bias tend to be involved in cell cycle progression,
and their disruption often leads to a cell cycle
delay or arrest phenotype (Fig. 9D and fig. S22).
A cell cycle delay may result when a mutation
activates a checkpoint pathway that slows cell

cycle progression, allowing the cell to correct
an otherwise rate-limiting defect and mask the
phenotypic effect normally associated with a
second mutation (36). Thus, an ORC-dependent
S-phase cell cycle delay may mask growth de-
fects associated with perturbation of genes re-
quired for polarized secretion during budding,
thereby resulting in positive interactions. Protein
complexes biased for positive interactions with
essential genes also exhibited many negative in-
teractions with checkpoint genes (P < 4 × 10−56;
Fisher’s exact test) (fig. S22), suggesting that cell
viability depends on an active checkpoint re-
sponse in the absence of these complexes. Genes
with cell cycle progression–related roles accounted
for 30% of essential gene-positive interactions,
which, combined with genes involved in proteo-
stasis, explain 46% of the positive interactions
among essential genes.

Discussion

A global network based on genetic interaction
profile similarity resolves a hierarchy of mod-
ules, enriched for sets of genes within specific
pathways and protein complexes, biological pro-
cesses, or subcellular compartments. In the con-
text of this functional organization, coherent
sets of negative and positive genetic interactions
connect both within and between the highly
resolved complex and pathway modules to map
a functional wiring diagram of the cell.
Our comprehensive analysis of genetic inter-

actions among essential genes revealed several
illuminating principles. First, consistent with
the results of our previous smaller-scale surveys
(1, 24), essential genes are major hubs and form
the basic scaffold of the global genetic interac-
tion network. Second, the extreme negative or
synthetic lethal interactions among essential
genes often occur between genes within the same
protein complex, or between genes in different
protein complexes but within the same biolog-
ical process or subcellular compartment, proper-
ties that may prove useful for predicting genetic
interactions in other systems. Third, positive
genetic interactions between two essential genes
typically do not reflect shared function, but rather
often occur between genes in distant cellular
compartments and reflect more general regu-
latory connections associated with a cell cycle
delay or proteostasis.
An important property associated with the

global network is the potential for digenic in-
teractions to compound the phenotypes asso-
ciated with single gene mutations. Whereas only
~1000 genes in the yeast genome are individu-
ally essential in standard growth conditions and
cause lethality when mutated (9, 10), we showed
that hundreds of thousands of mutant gene pair
combinations result in a negative interaction in
the global genetic interaction network, includ-
ing an extreme set of ~10,000 synthetic lethal
interactions between nonessential gene pairs
(8). In other words, we discovered a genetic back-
ground in which an additional ~3300 genes are
essential for viability (8). Despite the power of
this approach for uncovering growth depend-

encies, ~1000 of the 5400 yeast genes we exam-
ined showed relatively few genetic interactions
and remain sparsely connected. Our global ge-
netic network was mapped under a particular
condition in a specific genetic background, and
we anticipate that changing these two key fac-
tors may reveal new interactions for many of the
sparsely connected genes (37). Ultimately, broad
mapping of both core and condition-specific ge-
netic interactions promises to accelerate the field
of synthetic biology, providing a rational under-
standing of the requirements for the design of
minimal genomes (38).
It is also important to consider other types of

genetic interactions, beyond those associated
with loss-of-function mutations in haploid cells.
Our analysis revealed that relatively severe dele-
tion alleles of nonessential genes or TS alleles of
essential genes often show extensive digenic
interaction profiles. However, it is possible that
the more subtle mutations associated with nat-
ural genetic variation may require higher-order
combinations, involving more than two genes,
to modulate phenotype and influence herita-
bility extensively (39). One interesting case involves
duplicated genes with overlapping function,
which often are buffered more extensively, such
that more complex triple-mutant analysis will
be required to reveal their genetic interaction
profiles (1, 40). We must also understand the
general principles associated with genetic net-
works involving gain-of-function alleles and more
complex genetic interactions that can occur in
diploid and polyploid organisms (41), across a
variety of different cell types, within whole ani-
mals (42–44), or between hosts and their sym-
biotic organisms (45).
Because negative genetic interactions are

highly ordered and often occur as coherent sets,
(e.g., predominantly negative genetic interactions
connecting genes within a protein complex or
between two different protein complexes), many
different pairs of mutations may lead to the
same terminal synthetic lethal/sick phenotype.
We suspect that this network topology is impor-
tant when considering the genotype-to-phenotype
problem in human genetics. Because biological
systems are built upon sets of conserved genes
whose products participate in functional mod-
ules, it is reasonable to expect that the general
topology of genetic networks will also be con-
served (25). As observed for the complex-complex
connections on the global yeast genetic network,
mutations in many different pairs of genes may
lead to the same phenotype, such as a disease
state, in humans. This property of genetic net-
works means that scanning disease cohorts for
genetic variation that corresponds to coherent
sets of mutations that connect genes within or
between protein complexes and pathways (e.g.,
see functional wiring diagrams for the ORC the
19S proteasome in Fig. 9) may reveal genetic
networks underlying diseases.
The regulatory mechanisms associated with

positive genetic interactions among essential
genes, which include genetic suppression inter-
actions, are also potentially relevant to human
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Fig. 9. Functional wiring diagrams for specific protein complexes. (A) Ge-
netic interaction map for the ORC. (i) Regions of the global similarity network
significantly enriched for genes exhibiting negative (blue) or positive (yellow)
genetic interactions with ORCmembers were mapped using SAFE. (ii) Protein
complexes that showed coherent negative or positive genetic interactions with
ORC were placed on a schematic representation of the global similarity net-
work based on the average genetic interaction profile similarity of the complex
and connected with blue or yellow edges, respectively. (iii) A subset of protein
complexes from (ii) that showed coherent negative (blue) or positive (yellow)
genetic interactions with genes encoding the ORC are shown. (B) Genetic
interaction map for the 19S proteasome.The 19S proteasome networks shown

in (i) to (iii) were constructed as described in (A). (C) Distribution of positive
genetic interaction enrichment for protein complexes screened against the es-
sential gene array (TSA). Protein complexes enriched for positive interactions
with essential genes (yellow bars) tend to be associated with proteostasis-
related functions (2.3X, P < 10−7; Fisher’s exact test), including the 19S and 20S
proteasome subunits as well as the chaperonin-containing Tcomplex (CCT) and
prefoldin chaperone complexes (indicated on the graph). (D) Distribution of
positive versus negative genetic interactions for protein complexes enriched for
positive interactions shown in (C). Essential protein complexes that show a bias
toward positive interactions, such as the ORC, RFC, and GINS, are often required
for normal cell cycle progression (2X, P < 7 × 10−4; Fisher’s exact test).
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genetics because they may inspire therapeutic
approaches and elucidate mechanisms of heri-
tability (46, 47). Notably, mutations that com-
promise the cellular proteostasis network often
suppressed TS alleles of essential genes (table S3
and data file S16). It is possible that, similar to
yeast, certain variants of the human proteasome
also suppress the detrimental effects of genetic
variation associated with numerous other genes,
and their corresponding complexes and path-
ways, within the human genome. Although the
genes encoding the proteasome are essential in
human cells, and severe mutations in these genes
may cause disease (48), genetic variation that
modulates proteasome function subtly may have
the potential to be disease protective.
It is clear that the digenic interactions we have

mapped in yeast can be conserved in different
yeast species over hundreds of millions of years
of evolution (49, 50). Likewise, conservation of
genetic interactions from yeast to human cells
has been observed (51, 52), particularly within fun-
damental bioprocesses like DNA synthesis and
repair and chromosome segregation, which is
particularly relevant for the identification of tar-
gets for novel synthetic lethal cancer therapies
(53, 54). However, the general extent and breadth
of network conservation remain largely unexplored.
Importantly, genome-scale application of CRISPR
(clustered regularly interspaced short palindromic
repeats)–Cas9 genome editing approaches offer
the potential to map global genetic interaction
networks in human cells (55–57). We suspect that
the general principles of the global yeast genetic
network described here will be highly relevant
for both the efficient mapping and the interpre-
tation of analogous networks in a variety of dif-
ferent cells and organisms.

Methods summary

Methods for construction of yeast double-mutant
strains, identification, and measurement of ge-
netic interactions—as well as all analyses pertain-
ing to genetic interaction profiles and negative
and positive interactions—are described in detail
in the supplementary materials. General informa-
tion about our methods, accompanied by spe-
cific references to the supplementary materials,
is included throughout the text.
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