Fall 2005 Genomics Exam #3 Proteomics and Systems Biology There is no time limit on this test, though I am hoping it will not take more than 6 hours. There are 4 pages for this exam, including this cover sheet. You are not allowed discuss the test with anyone until all exams are turned in at noon on Thursday December 15. **EXAMS ARE DUE AT NOON ON THURSDAY DECEMBER 15**. Submit your paper and electronic answers before the deadline. You may use a calculator, a computer, but only the web pages that appear in this exam. You are NOT allowed to explore the internet to take this exam. This is a new policy and is required if I am to shorten the length of the exams. You may take this exam in as many blocks of time as you need to. NOTE: I leave town on December 9 and return December 14 after a red-eye back from a meeting in SF,CA. If you have questions, I suggest you ask me before I leave. I will have *very limited* access to email so you can use gmail: <a href="mailto:. Done – names and completion of survey verified by database search.