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ORIGIN OF THIS NSF WORKSHOP 
 
 
At a curriculum gathering during summer of 2004, Drs. Fowlks and Campbell 
presented their perspectives on the undergraduate educational implications of the 
NIH Roadmap. Fowlks addressed curricular changes in undergraduate biology, as 
well as recruitment and training for underrepresented populations. Campbell 
provided an overview of activities by GCAT, a non-profit educational consortium, 
to bring functional genomics methods into undergraduate courses and independent 
student research. After the presentations, an invited representative of NSF 
encouraged Dr. Fowlks and Dr. Campbell to submit a proposal that would provide a 
microarray workshop opportunity for undergraduate faculty at minority serving 
institutions (MSIs). The 2005 GCAT workshop at Morehouse College was an 
overwhelming success based on participant and instructor evaluations (see 
Outcomes of Previous Workshops below), as well as comments from two NSF 
Program Officers (POs) who attended part of the workshop. These POs encouraged 
Fowlks, Campbell, and their GCAT colleagues to submit a three-year proposal for 
DNA microarray workshops that would have a significant impact on the 
introduction of genomics in undergraduate curricula, especially in MSIs.  On the 
advice of the POs, this collaborative proposal brings Hampton University as the lead 
institution with Davidson College as the collaborative institution. Fowlks and Heyer 
will co-chair the advisory board which will focus on participant recruitment 
(emphasizing faculty from MSIs). Fowlks also will oversee workshop housing, 
transportation, and on-site facilities logistics while Campbell will focus on wet- and 
dry-lab curriculum, recruitment of instructors, and organization of the workshop 
technical aspects. As described in the budget justification, the budget will be divided 
according to these two functional roles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



History of Genomics and GCAT     Genomics first grabbed the headlines with the 
Human Genome Project. This monumental task was the beginning of a long process to 
understand how humans work. The production of any genome sequence is analogous to 
creating a periodic table for the chemical elements – a great start but ultimately only a 
parts list, failing to explain how the parts interact. Experimental data are needed to 
illuminate how all the genes work synergistically. One way to measure every gene’s 
activity simultaneously is to use DNA microarrays. DNA microarrays are produced by 
printing one spot of DNA for each gene onto a specially coated glass microscope slide. 
Each spot contains a unique DNA sequence specific for only one gene. For example, a 
yeast DNA microarray is composed of ~ 6,500 spots – one for each of its 6,500 genes. 
The investigator isolates the mRNAs and couples one color fluorescent dye to the 
mRNAs for one growth condition. In parallel, the investigator isolates and labels with a 
different color the mRNAs isolated from cells grown under a different condition. The two 
populations of differently colored mRNAs are mixed and allowed to base pair with the 
appropriate genes among the 6,500 spots on the microarray. The fluorescence for each 
color on every spot is quantified to produce a ratio of mRNA binding from the two 
growth conditions. From this list of 6,500 ratios, the investigator can determine which 
genes are activated and which ones are repressed in the two growth conditions (see an 
animated version here: <www.bio.davidson.edu/Courses/genomics/chip/chip.html>). 
Measuring the genomic transcriptional response to different growth conditions is a 
critical step in understanding how each gene contributes to the genome’s combinatorial 
functional capacity.  
 
GCAT was conceived in December 1998 by Dr. A. Malcolm Campbell (Davidson 
College) and Dr. Mary Lee Ledbetter (College of the Holy Cross), who were inspired by 
Dr. Patrick Brown’s talk at the 39th Annual meeting of the American Society of Cell 
Biology regarding his pioneering work on DNA microarrays. DNA microarray 
technology has revolutionized the investigation of gene expression at the genomic level, 
and holds great promise for understanding the complex, systems-level regulation in many 
species. Many job opportunities in academia and industry are available for trained college 
graduates. Furthermore, the best graduate programs are looking for students with 
practical experience. However, microarray technology is inaccessible to many 
undergraduates because of limitations in funding and faculty expertise. GCAT’s mission 
is to make such experiments accessible to all undergraduates and we are succeeding: 
since 2000, about 5,000 undergraduates have performed experiments with DNA 
microarrays obtained through GCAT and analyzed their results with free software 
developed by co-PI Laurie Heyer and her undergraduate students 
(www.bio.davidson.edu/MAGIC). GCAT makes microarray experiments affordable 
through cost-sharing, provides a clearinghouse of information, raw data and analyzed 
results for use in teaching genomics, and represents a network of mutually supportive 
teachers using functional genomics.  
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WORKSHOP #1 PARTICIPANTS 
 
 

Name Institution Email  Address 
Dixon, Emily St. Lawrence Univ. edixon@stlawu.edu 

Essig, David Geneva College dessig@geneva.edu 

Estevez, Ana St. Lawrence Univ. aestevez@stlawu.edu 

Ghosh, Sibdas Dominican Univ, CA sghosh@dominican.edu 

Hammonds-Odie, Latanya Dillard Univ. lhammonds@dillard.edu 

Harrison, Benjamin College U of Alaska afbrh@uaa.alaska.edu 

Holmes, Keinya Hampton Univ. keinya.holmes@hamptonu.edu 

Horst, Cynthia Carroll College chorst@carrollu.edu 

Johnson-Brousseau, Sheila Dominican Univ, CA sajb109@gmail.com 

Lodhi, Muhammad Fayetteville St. Uiv. mlodhi@uncfsu.edu 

Louie, Maggie Dominican Univ, CA maggie.louie@dominican.edu 

Lu, Yuefeng Tougaloo College ylu@tougaloo.edu 

McCray, Joseph Morehouse jmccray@morehouse.edu 

Nagengast, Alexis Widener nagengast@pop1.science.widener.edu 

Osgood, Robert Rochester Inst Tech rcoscl@rit.edu 

Peng, Chuang Morehouse College cpeng@morehouse.edu 

Reyna, Nathan Ouachita Baptist U. reynan@OBU.EDU 
Santisteban, Maria UNC-Pembroke maria.santisteban@uncp.edu 

Vanderpuye, Oluseyi Albany State Univ. vanderpuye@asurams.edu 

Woriax, Velinda UNC-Pembroke velinda.woriax@uncp.edu 

Wright, Stephen 
Carson-Newman 
Coll swright@cn.edu 
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WORKSHOP #2 PARTICIPANTS 

 
Name • Institution • Email Address 
Bayline, Ronald Wash. & Jeff. College rjbayline@washjeff.edu 

Bellin, Robert Coll. Of the Holy Cross rbellin@holycross.edu 

DeBerry, Candy Wash. & Jeff. College cdeberry@washjeff.edu 

Dwyer, Kathleen Univ. Scranton kgd301@scranton.edu 

Fahy, Michael Chapman Univ. fahy@chapman.edu 

Fuselier, Linda MN St. Univ. fuselier@mnstate.edu 

Gordon, Ethel NC A&T Univ. ejgordon@ncat.edu 

Hammond, Charlotte Quinnipiac Univ charlotte.hammond@quinnipiac.edu 

Holgado, Andrea SW OK State Univ. andrea.holgado@swosu.edu 

Hum-Musser, Sue Western Ill. Univ. sm-hum-musser@wiu.edu 

Jenik, Pablo Franklin and Marshall pjenik@fandm.edu 

Lanni, Jennifer Wheaton College MA lanni_jennifer@wheatoncollege.edu 

LaRiviere, Frederick Washington and Lee U. larivieref@wlu.edu 

Lee, Alice Wash. & Jeff. College aglee@washjeff.edu 

Mukhtar, Hamid NC A&T Univ hdismail@ncat.edu 

Pavao, Maura Worcester State Coll mpavao@worcester.edu 

Rhode, Jennifer UNC-Ashville jrhode@unca.edu 

Roig-Lopez, Jose Universidad del Este (UNE) joroig@suagm.edu 

Rowland-Goldsmith, 
Melissa Chapman Univ. rowlandg@chapman.edu 

Schisa, Jennifer Central Michigan Univ. schis1j@cmich.edu 

Singh, Minati Univ. Iowa minati-singh@uiowa.edu 

Villafane, Robert Alabama State Univ 
drbob523@yahoo.com  
rvillafane@alasu.edu 

Ward, Gregg Winston-Salem St. Univ. wardgr@wssu.edu 

Watson, Fiona Washington and Lee Univ. watsonf@wlu.edu 
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2009 GCAT 
Microarray 
Workshops 

Workshop #1 July 6 - 10 
Morehouse College, Atlanta, GA 

This will be the last GCAT Microarray Workshop 

 

Workshop #1 
Link to Workshop #2  

Schedule Overview 

 

2009 Instructors  

Todd Eckdahl, Laurie Heyer, Anne Rosenwald, Consuelo Alvarez,  

Day 1 (Monday July 6)  

Charles Hauser, Malcolm Campbell, Edison Fowlks  

Time Activity Lead Instructors  
8:00 - 
8:30  Last Minute Laptop Preparation  Laurie Heyer and Malcolm 

Campbell  
8:30 - 
9:00  Greetings and Overview  Edison Fowlks 

http://www.bio.davidson.edu/projects/GCAT/Workshop_2009/2009_2.html�


9:00 - 
10:15  

Introduction to Microarrays, MAGIC 
Tool web, Raw Data, Online Tutorials  

Launch 

 

Malcolm Campbell 
(quick links to short and 
long animations)  

Laurie Heyer  

10:15 - 
10:30  Short Break Dr. Pleez B. Prompt  

10:30 - 
11:15 Making a Project 

Laurie Heyer & Consuelo 
Alvarez 

11:15 - 
11:35 Practice Making Projects  Laurie Heyer & Consuelo 

Alvarez 
11:35 - 
12:15 Slide Layout and Gene List Laurie Heyer & Consuelo 

Alvarez 
12:15 - 
1:15 Lunch    

1:15 - 
1:45 Practice Layout and Gene List  Laurie Heyer & Consuelo 

Alvarez 
1:45 - 
2:30  Addressing and Gridding Laurie Heyer & Consuelo 

Alvarez 
2:30 - 
2:45 Short Break   

2:45 - 
3:15  Practice Gridding Laurie Heyer & Consuelo 

Alvarez 
3:15 - 
4:00  Segmentation 

Laurie Heyer & Consuelo 
Alvarez 

4:00 - 
4:30  Practice Segmentation  Laurie Heyer & Consuelo 

Alvarez 
4:30 - 
5:00  

Generate Multiple Ratio Expression 
Files  

Laurie Heyer & Consuelo 
Alvarez 

5:00 -
6:00  

Practice Multiple Ratio Expression 
Files 

Quit MAGIC Tool  

Laurie Heyer & Consuelo 
Alvarez 

Goal for Day 1: Create 6 Columns of Data  
6:00 
onwards  Dinner    
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http://www.bio.davidson.edu/projects/MAGIC/MAGIC.html�
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Schedule Overview  

 

Day 2 (Tuesday July 7)  

Time Activity Lead Instructors  
8:30 - 
11:00  

cDNA prep with provided RNA (get 
started right away)  

Anne Rosenwald & 
Todd Eckdahl  

  Introductions and overviews (during 
incubation)  

Anne Rosenwald & 
Todd Eckdahl  

  get the slides ready for the first 
hybridization mix  

Anne Rosenwald & 
Todd Eckdahl  

11:00 - 
11:30 RNA degradation using NaOH  Anne Rosenwald & 

Todd Eckdahl  
11:30 - 
12:00 cDNA concentration  Anne Rosenwald & 

Todd Eckdahl  
12:00 - 
12:30 

Prepare hybridization mix 1 to go on 
arrays for overnight incubation  

Anne Rosenwald & 
Todd Eckdahl  

12:30 - 
1:30 Lunch    

1:30 - 
2:00 Log Transforming Data 

Laurie Heyer & 
Consuelo Alvarez 

2:00 - 
2:15 Practice Log Transforming Data Laurie Heyer & 

Consuelo Alvarez 
2:15 - 
2:45  Gene Information  Laurie Heyer & 

Consuelo Alvarez 
2:45 - 
3:00 

Short Break and Practice Gene 
Information   

3:00 - 
4:00  Explore Data Laurie Heyer & 

Consuelo Alvarez 
4:00 - 
4:30 Practice Exploring  Laurie Heyer & 

Consuelo Alvarez 
4:30 - 
5:30 

Clustering Overview (you practice later: 
online + PDF) 

Laurie Heyer & 
Consuelo Alvarez 

http://www.bio.davidson.edu/projects/GCAT/Workshop_2009/2009_1.html#Overview�
http://www.bio.davidson.edu/people/macampbell/ACS_MAGIC/transform.html�
http://gcat.davidson.edu/DGPB/clust/clustering.htm�
http://gcat.davidson.edu/DGPB/clust/Self.pdf�


Goal for Day 2: Manipulate and Explore Data 

Generate cDNA Probes & Hybe Them on Chips  
6:00 - 
7:30 Dinner   

7:30 - 
8:30  TBA   

Schedule Overview  

GCAT Wet Lab Protocols 

Day 3 (Wednesday July 8)  

Time Activity Lead Instructors  
8:30 - 
9:30 

Washes, and set up 2nd hybridization 
mix  

Anne Rosenwald & Todd 
Eckdahl  

8:30 - 
12:30 Second hyb begins  Anne Rosenwald & Todd 

Eckdahl  

  prep RNA from frozen pellets with 
Ambion kit  

Anne Rosenwald & Todd 
Eckdahl  

  Run some on gels  Anne Rosenwald & Todd 
Eckdahl  

12:30 - 
1:30 Lunch    

12:30 - 
5:30 Wash and scan chips  Anne Rosenwald & Todd 

Eckdahl  

  Discussion of Quantifying  
mRNA Levels with RT PCR  

Anne Rosenwald & Todd 
Eckdahl  

  
Discussion of Using Microarrays in 
Courses 
Spot Synthesizer  

Anne Rosenwald & Todd 
Eckdahl  

  Discussion of Using Microarrays in 
Research  

Anne Rosenwald & Todd 
Eckdahl  

  Discussion of Results  Anne Rosenwald & Todd 
Eckdahl  

Goal for Day 3: Wash & Scan Chips 

Discuss and Trouble Shoot Results 
6:00 - Dinner    

http://www.bio.davidson.edu/projects/GCAT/Workshop_2009/2009_1.html#Overview�
http://www.bio.davidson.edu/projects/GCAT/GCATprotocols.html�
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7:00 
7:30 - 
8:30  TBA   

  

GCAT Wet Lab Protocols 

Schedule Overview  

 

Day 4 (Thursday July 9)  

Time Activity Lead Instructors  
8:00 - 
8:30  Refresh Memory  Laurie Heyer & Consuelo 

Alvarez  
8:30 - 
10:15  

Generate Ratios from Your 
Microarray  You  

10:15 - 
10:30  Short Break    

10:30 - 
12:15 1 Column Exploration Laurie Heyer & Consuelo 

Alvarez  
12:15 - 
1:15 Lunch    

1:15 - 
3:00 

Make a Series from Separate 1 
Columns  

Laurie Heyer & Consuelo 
Alvarez  

3:00 - 
3:15 Short Break    

3:15 - 
6:00  DeRisi Data Analaysis  Laurie Heyer & Consuelo 

Alvarez  
Goal for Day 4: Know what to do after wet lab! 

6:00 - 
7:00 Dinner    

7:30 - 
8:30  TBA   

http://www.bio.davidson.edu/projects/GCAT/GCATprotocols.html�
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Schedule Overview  

Day 5 (Friday July 10)  

Time Activity Lead Instructors  
8:00 - 
8:30  Summarize Past 4 Days  GCAT Instructors  

8:30 - 
10:15  Discuss Curriculum Ideas  GCAT Instructors  

10:15 - 
10:30  Short Break Dr. Juan Las Time  

10:30 - 
12:15 

Your Quesitons and Workshop 
Assessment GCAT Instructors  

12:15 - 
1:15 Lunch and depart  Eat at Cafeteria 

Goal for Day 5: Know how you can adapt and adopt GCAT resources.  

 

Schedule Overview  

 

 
Email Edison Fowlks or Malcolm Campbell with Questions  

2009 Workshop Main Page 

This material is based upon work supported by the National Science Foundation under 
Grant No. DBI-0627478. Any opinions, findings, and conclusions or recommendations 
expressed in this material are those of the author(s) and do not necessarily reflect the 
views of the National Science Foundation.  

GCAT Home Page 

 
 

 

© Copyright 2009 Department of Biology, Davidson College,  
Send comments, questions, and suggestions to: macampbell@davidson.edu  
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Click to see a larger 
version of this image.  

2009 GCAT 
Microarray 
Workshops 

Workshop #2 July 7 - 11 
Morehouse College, Atlanta, GA 

This will be the last GCAT Microarray Workshop 

 

Workshop #2 
Link to Workshop #1 

Schedule Overview  

 

2009 Instructors  

Todd Eckdahl, Laurie Heyer, Anne Rosenwald, Consuelo Alvarez,  

 

Charles Hauser, Malcolm Campbell, Edison Fowlks  

http://www.bio.davidson.edu/projects/GCAT/tour/one_grid.jpg�
http://www.bio.davidson.edu/projects/GCAT/tour/one_grid.jpg�
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Day 1 (Tuesday July 7) 

Time Activity Lead Instructors  
8:00 - 
8:30  Last Minute Laptop Preparation  Laurie Heyer and Malcolm 

Campbell  
8:30 - 
9:00  Greetings and Overview  Edison Fowlks 

9:00 - 
10:15  

Introduction to Microarrays, MAGIC 
Tool web, Raw Data, Online Tutorials  

Launch 

 

Malcolm Campbell 
(quick links to short and 
long animations)  

Laurie Heyer & Consuelo 
Alvarez 

10:15 - 
10:30  Short Break   

10:30 - 
11:15 Making a Project 

Laurie Heyer & Consuelo 
Alvarez 

11:15 - 
11:35 Practice Making Projects  Laurie Heyer & Consuelo 

Alvarez 
11:35 - 
12:15 Slide Layout and Gene List Laurie Heyer & Consuelo 

Alvarez 
12:15 - 
1:30 Lunch    

1:30 - 
4:00  

cDNA prep with provided RNA (get 
started right away)  

Charles Hauser & Anne 
Rosenwald 

  Introductions and overviews (during 
incubation)  

Charles Hauser & Anne 
Rosenwald 

  get the slides ready for the first 
hybridization mix  

Charles Hauser & Anne 
Rosenwald 

4:00 - 
4:30  RNA degradation using NaOH  Charles Hauser & Anne 

Rosenwald 
4:30 - 
5:00 cDNA concentration  Charles Hauser & Anne 

Rosenwald 
5:00 - 
5:30 

Prepare hybridization mix 1 to go on 
arrays for overnight incubation  

Charles Hauser & Anne 
Rosenwald 

Goal for Day 1: Start MAGIC Tool 
Start Wet Lab  
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6:00 - 
7:30  Dinner    

7:30 - 
8:30  TBA   

Schedule Overview  

 

Day 2 (Wednesday July 8)  

Time Activity Lead Instructors  
8:00 - 
8:30  Practice Layout and Gene List  Laurie Heyer & Consuelo 

Alvarez 
8:30 - 
9:15 Addressing and Gridding Laurie Heyer & Consuelo 

Alvarez 
9:15 - 
9:45  

Practice Gridding and Break if you 
need one  

Laurie Heyer & Consuelo 
Alvarez 

9:45 - 
10:30  Segmentation 

Laurie Heyer & Consuelo 
Alvarez 

10:30 - 
11:00 Practice Segmentation  Laurie Heyer & Consuelo 

Alvarez 
11:00 - 
11:30 

Generate Multiple Ratio Expression 
Files  

Laurie Heyer & Consuelo 
Alvarez 

11:30 - 
12:30 

Practice Multiple Ratio Expression 
Files 

Laurie Heyer & Consuelo 
Alvarez 

12:30 - 
1:30 Lunch    

1:30 - 
2:00 Log Transforming Data 

Laurie Heyer & Consuelo 
Alvarez 

2:00 - 
2:15 Practice Log Transforming Data Laurie Heyer & Consuelo 

Alvarez 
2:15 - 
2:45  Gene Information  Laurie Heyer & Consuelo 

Alvarez 
2:45 - 
3:00 

Short Break and Practice Gene 
Information   

http://www.bio.davidson.edu/projects/GCAT/Workshop_2009/2009_2.html#Overview�
http://gcat.davidson.edu/GCAT/workshop2/addressing_MT.html�
http://www.bio.davidson.edu/projects/GCAT/Griding.html�
http://www.bio.davidson.edu/projects/GCAT/Segmentation.html�
http://www.bio.davidson.edu/people/macampbell/ACS_MAGIC/transform.html�


3:00 - 
4:00  Explore Data Laurie Heyer & Consuelo 

Alvarez 
4:00 - 
4:30 Practice Exploring  Laurie Heyer & Consuelo 

Alvarez 
4:30 - 
5:30 

Clustering Overview (you practice 
later: online + PDF) 

Laurie Heyer & Consuelo 
Alvarez 

  Goal for Day 2: Manipulate and 
Explore Data   

6:00 - 
7:00 Dinner  Eat at Cafeteria 

7:30 - 
8:30  TBA   

  

Schedule Overview  

GCAT Wet Lab Protocols 

Day 3 (Thurday July 9)  

Time Activity Lead Instructors  
8:30 - 
9:30 

Washes, and set up 2nd hybridization 
mix  

Charles Hauser & Anne 
Rosenwald 

8:30 - 
12:30 Second hyb begins  Charles Hauser & Anne 

Rosenwald 

  prep RNA from frozen pellets with 
Ambion kit  

Charles Hauser & Anne 
Rosenwald 

  Run some on gels  Charles Hauser & Anne 
Rosenwald 

12:30 - 
1:30 Lunch    

12:30 - 
5:30 Wash and scan chips  Charles Hauser & Anne 

Rosenwald 

  Discussion of Quantifying  
mRNA Levels with RT PCR  

Charles Hauser & Anne 
Rosenwald 

  
Discussion of Using Microarrays in 
Courses 
Spot Synthesizer  

Charles Hauser & Anne 
Rosenwald 

  Discussion of Using Microarrays in Charles Hauser & Anne 

http://gcat.davidson.edu/DGPB/clust/clustering.htm�
http://gcat.davidson.edu/DGPB/clust/Self.pdf�
http://www.bio.davidson.edu/projects/GCAT/Workshop_2009/2009_2.html#Overview�
http://www.bio.davidson.edu/projects/GCAT/GCATprotocols.html�
http://www.lifescied.org/cgi/content/abstract/4/2/157�
http://www.lifescied.org/cgi/content/abstract/4/2/157�
http://www.bio.davidson.edu/projects/GCAT/Spot_synthesizer/Spot_synthesizer.html�
http://www.bio.davidson.edu/projects/GCAT/Workshop_2009/Microarrays_Research.ppt�


Research  Rosenwald 

  Discussion of Results  Charles Hauser & Anne 
Rosenwald 

Goal for Day 3: Wash & Scan Chips 

Discuss and Trouble Shoot Results 
6:00 - 
7:00 Dinner    

7:30 - 
8:30  TBA   

GCAT Wet Lab Protocols 

Schedule Overview  

 

Day 4 (Friday July 10)  

Time Activity Lead Instructors  
8:00 - 
8:30  Refresh Memory  Laurie Heyer & Consuelo 

Alvarez  
8:30 - 
10:15  

Generate Ratios from Your 
Microarray  You  

10:15 - 
10:30  Short Break    

10:30 - 
12:15 1 Column Exploration Laurie Heyer & Consuelo 

Alvarez  
12:15 - 
1:15 Lunch    

1:15 - 
3:00 

Make a Series from Separate 1 
Columns  

Laurie Heyer & Consuelo 
Alvarez  

3:00 - 
3:15 Short Break    

3:15 - 
6:00  DeRisi Data Analaysis  Laurie Heyer & Consuelo 

Alvarez  

http://www.bio.davidson.edu/projects/GCAT/GCATprotocols.html�
http://www.bio.davidson.edu/projects/GCAT/Workshop_2009/2009_2.html#Overview�
http://gcat.davidson.edu/GCAT/workshop2/derisi_lab.html�
http://www.bio.davidson.edu/projects/MAGIC/MAGIC.html�


Goal for Day 4: Know what to do after wet lab! 
6:00 - 
7:00 Dinner    

7:30 - 
8:30  TBA   

  

Schedule Overview  

Day 5 (Saturday July 11)  

Time Activity Lead Instructors  
8:00 - 
8:30  Summarize Past 4 Days  GCAT Instructors  

8:30 - 
10:15  Discuss Curriculum Ideas  GCAT Instructors  

10:15 - 
10:30  Short Break Dr. Juan Las Time  

10:30 - 
12:15 

Your Quesitons and Workshop 
Assessment GCAT Instructors  

12:15 - 
1:15 Lunch and depart  Eat at Cafeteria 

Goal for Day 5: Know how you can adapt and adopt GCAT resources.  

 

Schedule Overview  

  

 
 

 

 

http://www.bio.davidson.edu/projects/GCAT/Workshop_2009/2009_2.html#Overview�
http://www.bio.davidson.edu/projects/GCAT/Workshop_2009/2009_2.html#Overview�
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WORKSHOP ASSESSMENT 
 
 

 
  

Anonymous Pre-Workshop Assessment for  
MOREHOUSE  GCAT Workshop, summer 2008 

     Please supply your responses to these questions. We are interested in your thoughts 
and concerns prior to the workshop so we can compare these with your responses after 
the workshop. Circle the best response. Space is provided at the bottom of the survey 
for additional comments. 
 
1) I have performed experiments with DNA microarrays before this workshop. 
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
2) I have successfully generated usable data with DNA microarrays before this workshop.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
3) I have covered DNA microarrays in lecture prior to this workshop (about _____ 
minutes of class time.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
4) I have a general knowledge about DNA microarrays, but not enough to teach about 
them in any depth.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
5) I am uncertain how to analyze DNA microarray data.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
6) DNA microarrays are too expensive for me to use in my curriculum.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
7) I would be more likely to teach a new method (e.g. DNA microarrays) if I had a 
support network of colleagues.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 



8) My institution would appreciate me bring a new, genomics method into the 
curriculum.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
9) I am concerned that I may not learn enough at this workshop to teach DNA 
microarrays.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
10) I was forced/pressured by a superior to attend this workshop.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
11) I doubt I have the computer power to perform DNA microarray analysis.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
12) The hardest part of DNA microarray experiments is data production.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
13) My students would benefit from learning more about DNA microarrays.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
=============================================================== 
Rank these criteria in priority from most important to least important. You may use a 
number more than once (e.g. there may be two equally rated “most important” criteria). 
You may skip numbers too. If you have already used DNA microarrays, rate them 
according to reasons your used of DNA microarrays in your curriculum is limited.  

1 = most important and 6 = least important. 
 
____ Departmental budget is why I have not used DNA microarrays in my curriculum.  
____ “I am too busy already.” is why I have not used DNA microarrays in my 
curriculum.  
____ Lack of training is why I have not used DNA microarrays in my curriculum.  
____ My level interest is why I have not used DNA microarrays in my curriculum.  
____ No space in the curriculum is why I have not used DNA microarrays in my 
curriculum.  
____ Intimidating technology is why I have not used DNA microarrays in my curriculum.   

 
Please share any additional comments or thoughts:  
 
 
 



 

Anonymous Post-Workshop Assessment for  
MOREHOUSE GCAT Workshop, summer 2009 

     Please supply your responses to these questions. We are interested in your thoughts 
and impressions after the workshop so we can evaluate the effectiveness of the workshop. 
Circle the best response. Space is provided at the bottom of the survey for additional 
comments. 
 
I was in: workshop #1 (started Wed., July 27), or workshop #2 (started Thurs., July 28).  
 
1) My lab group successfully generated usable data with DNA microarrays.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
2) I successfully analyzed DNA microarray data during the workshop. 
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
3) I know enough about DNA microarrays now that I could include them in my 
curriculum.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
4) With the help of GCAT, I could afford DNA microarrays in my curriculum.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
5) The workshop provided me with enough confidence to include DNA microarrays in 
my curriculum.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
6) I will include DNA microarrays in my curriculum for 2005 – 2006 academic year.  
(about how many students would be affected?_______) 
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
7) I want to include DNA microarrays in my curriculum but cannot this coming year. 
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
8) It was helpful/comforting to have other faculty learning with me in the workshop. 
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 



9) Meeting faculty from other schools increased the probability of me adding DNA 
microarrays to my curriculum.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
10A) After the workshop, I am more likely to add a data analysis dry-lab to my 
curriculum.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
10B) After the workshop, I am more likely to add a data production wet-lab to my 
curriculum.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
11)  I will try to create space in the curriculum to add DNA microarrays to my 
curriculum. 
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
12) A letter from GCAT might convince my administrators I need more computer power.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
13) The hardest part of DNA microarray experiments is data production.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
14) My students would benefit from learning more about DNA microarrays.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
15) The quality of the data analysis experience was very good.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
16) The quality of the wet lab experience was very good.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
 
17) If I analyzed data, I will use MAGIC Tool.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
18) I think more faculty would like to attend this type of workshop. 



Strongly agree Somewhat 
agree 

Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
 
19) I would recommend a GCAT workshop to my friends.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
20) It was good to meet the NSF program officers.  
Strongly agree Somewhat 

agree 
Neutral 
opinion 

Somewhat 
disagree 

Strongly 
disagree 

 
On a scale of 1 – 10, how would you rate the workshop logistics? (1 = great; 10 = 
terrible) 
Application process   
Housing  
Food  
Wet lab facilities  
Computer lab facilities  
 
Comments or suggestions about the workshop (use back if necessary):   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



GCAT Microarray: 
Culturing Yeast, Isolating RNA, 3DNA Protocol 

 
Written by Anne Rosenwald and Todd Eckdahl (Spring 2008) 

Thanks to Mary Lee Ledbetter and Dave Kushner who provided resource materials and 
Consuelo Alvarez and Chuck Hauser for comments 

 
Note that all of the information here, as well as ideas for implementation in a variety of 
classes and formats can be found at:  
 

http://www.bio.davidson.edu/projects/GCAT/GCAT.html 
 
We also urge you to join the GCAT Listserv – this community of undergraduate teachers 
is a great source of information and ideas.   
 
Supply List 
 
S288C yeast strain 
YPD media (recipe is given here on p. 2, but more details on GCAT web site) 
RNA isolation kit (we’re using the Ambion kit – www.ambion.com) 
Agarose 
1x Tris-Borate-EDTA (1x TBE), pH 8.3 (89 mM Tris-borate, 2 mM EDTA) 
Ethidium bromide (10 mg/ml) 
RNA standards 
Genisphere Array 350 Ex kit (www.genisphere.com) 
Reverse transcriptase (which can be ordered with the Genisphere kit) 
100 mM DTT 
Molecular Biology Grade Ethanol 
3 M sodium acetate, pH 5.2 
1 M Tris-HCl, pH 7.5 
0.5 M NaOH / 50 mM EDTA  
1x Tris/EDTA (1x TE), pH 8.0 (10 mM Tris / 1 mM EDTA) 
Microcon YM-30 concentrators (www.millipore.com) 
Yeast microarrays 
Sonicated salmon sperm DNA 
20x SSC  
SDS (10% stock) 
 
Equipment List 
 
Shaking incubator to grow yeast cultures 
Clinical centrifuge 
Microcentrifuges 
Vortex mixers 
UV/visible spectrophotometer 

http://www.bio.davidson.edu/projects/GCAT/GCAT.html�
http://www.ambion.com/�
http://www.genisphere.com/�
http://www.millipore.com/�


Agarose gel electrophoresis apparatus and power supply 
Hybridization chambers 
Dry incubator or water bath  
Heating blocks (not crucial if water baths and incubators are available, but handy) 
Access to microarray scanner (i.e. via GCAT – see the web site for details) 
Speedvac 
Micropipettors, including ones that will measure out 1-2 µl volumes 
Sterile, RNAse free tips appropriate for your micropipettors 
 
Culturing Yeast 
 
A strain of yeast commonly used by researchers is S288C.  Most GCAT members also 
use this strain and share it with other members of the community.  Information about 
S288C, as well as great information about other strains of yeast, yeast genes, yeast 
researchers, and other yeast resources, can be obtained at the Saccharomyces Genome 
Database (http://www.yeastgenome.org/straintable.shtml#S288C). Dave Kushner 
(Dickinson College) has a detailed protocol for growing yeast on the GCAT web site.   
 
DeRisi et al. used S288C in collecting microarray data on the yeast diauxic shift from 
anaerobic to aerobic metabolism.  Below is a procedure by which yeast can be cultured 
and harvested to measure the effect of this diauxic shift on gene expression.  The goal is 
to collect yeast at a point early in the growth curve and at one or more later points. 
 

1. Transfer a colony or loop of S288C yeast to 5 ml YPD (5 g yeast extract, 10 g 
peptone, 10 g dextrose in 500 ml, autoclave) and incubate at 30o

 

C with shaking 
overnight. 

2. Transfer 1 ml of overnight into 200 ml YPD in a 500 ml flask and incubate with 
shaking at 30o

 
C. 

3. Check the absorbance at 600 nm after about eight hours and determine if it is the 
value you want to have for the early time point.  If so, collect volumes of yeast 
culture in separate tubes that correlate with the capacity of 
the RNA isolation kit.  The table shows some estimates for 
this.  For example, 167 ml of yeast at an A600 of 0.14 
yields 3 x 108 

 

cells, the capacity of the Ambion RiboPure 
Yeast kit described below. 

4. Spin the yeast culture samples in a clinical centrifuge for 
10 minutes at 4000 rpm.  

 
5. Pour off the supernatant and either refrigerate the pellets for use soon or freeze 

them for use later. 
 
6. Repeat steps 3-5 for one or more later time points.  Reaching an A600 

A

of 6.9 may 
take 12-16 hours. 

cells / ml 600 
0.14 1.8 x 106 

0.46  6.3 x 106 
0.80 1.1 x 107 
1.8 2.3 x 107 
3.7 4.8 x 107 
6.9 1.0 x 108 
7.3 1.2 x 108 

http://www.yeastgenome.org/straintable.shtml#S288C�


Prepare Total Yeast RNA 
 
RNA can be prepared in any number of ways.  Check the GCAT web site for options 
used by instructors and other experienced microarrayers for ideas.  Dr. Dave Kushner 
(Dickinson College) has a protocol on the GCAT web site that involves an extraction 
with hot phenol.  There are also a number of kits available, including the Total 
RNASafeKit from QBiogene, the RNeasy kit from Qiagen, and the RiboPure Yeast kit 
from Ambion.   The kit we’re using is the one from Ambion.  
 
Ambion RiboPure Yeast Protocol 
 
Implementation note:  This protocol, from yeast pellets, takes about an hour.   

 
1. To pellets with no more that 3 x 108 

 

cells, add the following and resuspend the 
cells by vigorous vortexing for 15 seconds. 

480 µl  lysis buffer 
48 µl 10% SDS 
480 µl  phenol/chloroform/IAA 

 
2. Pour about 750 µl of cold Zirconia beads into a provided 1.5 ml screw cap tube, 

transfer the yeast cell mixture into the tube, and vortex for 10 minutes. 
 
3. Spin 5 minutes at 16,000 x g to separate aqueous and organic phases. 
 
4. Carefully transfer top aqueous phase to a 15 ml tube without disturbing the 

interface. 
 
5. Preheat 60 µl elution solution for each isolation to about 95o

 
C. 

6. Add 1.9 ml binding buffer to the sample in the 15 ml tube and mix thoroughly. 
 
7. Add 1.25 ml 100% ethanol to the sample in the 15 ml tube and mix thoroughly. 
 
8. Add 700 µl of the sample to a filter cartridge placed onto a supplied collection 

tube. 
 
9. Centrifuge for 30 sec at 14,000 x g. 
 
10. Discard flow-through 
 
11. Repeat steps 8 and 9 until the entire sample has been applied to the filter 

cartridge. 
(Note: steps 8-11 can also be accomplished by fitting the filter cartridge 
onto a 5 ml syringe barrel connected to a vacuum source.) 
 



12. Wash the filter by adding 700 µl wash solution 1 and centrifuging for 1 minute at 
full speed.  Discard flow-through. 

 
13. Wash by adding 500 µl wash solution 2/3 and centrifuging at full speed.  Discard 

flow-through.  Repeat this step. 
 
14. Centrifuge for 1 minute at full speed to dry filter. 
 
15. Transfer filter to clean 2 ml collection tube. 
 
16. Add 25 µl elution solution, preheated to about 95o

 
C, to the center of the filter. 

17. Centrifuge at full speed for 1 minute. 
 
18. Repeat steps 16 and 17.  Isolated total RNA should be in a volume of about 50 µl. 

 
 
Checking Quality and Quantity of RNA 
 

Important implementation note:  Although the Genisphere protocol we describe 
below is fairly robust, even with less than ideal RNA samples, we strongly 
recommend checking your RNA by gel before proceeding.  It’s better and ultimately 
cheaper to make more RNA than to waste a microarray with bad samples.   

 
1. Measure RNA with UV spectrophotometer at 260 and 280 nm.  The ratio of A260 

to A280 should be between 1.8 and 2.2.  This is an indication of the amount of 
protein contamination (including RNases) present in the samples.  The RNA 
absorbs mostly at the lower wavelength while proteins absorb at the higher one.  
The concentration of RNA can also be estimated by the A260 

 

 using the following 
formula: 

RNA Concentration = A260 
 

x dilution factor x 40 ng/µl 

2. Check quality by running 1 µg on a 1% 
agarose gel (denaturing loading buffers 
may be used).  Ethidium bromide may 
be added to gel and buffer at 0.5 µg/ml 
for staining.  As seen at right, two bright 
rRNA bands should be visible on a 
background smear of mRNA with a 
minimum of small molecular weight 
degradation products. 

 
 



3. Precipitate 10 µg aliquots of RNA for use in labeling procedure using 1/10 
volume 3M sodium acetate, pH 5.2, and 2 volumes ethanol.  Centrifuge at high 
speed for 10 minutes and air dry pellets (or use speed vac).  

 
 

Labeling of Microarrays with Genisphere Array 350 Kit 
 
This protocol is based on the Array 350 kit – other kits are available, differing in number 
of fluorophores attached to the dendrimer.  The general web address is 
www.genisphere.com.  This site has good pictures – take a look!   
 

 
 
The capture reagents are dendrimers, incorporating many fluorophores into one capture 
molecule. 
 

http://www.genisphere.com/�


  
 
 
Two different cDNA preparations will each have a capture tag – each capture tag will 
bind to a different dendrimer tag, so that you will be able to visualize the amount of red 
and green fluorescence of the two cDNAs in the two different conditions.   
 

 
 
Important Note:   
 
The two dyes we are using for this experiment are called Cy3 and Cy5 
 
Cy3 absorbs blue (looks blue to your eye) but fluoresces red. 
Cy5 absorbs pink (looks pink to your eye) but fluoresces green. 

 
 

 
 



Prepare cDNA with capture tag  
 
Implementation note:  These steps (cDNA synthesis and RNA degradation) can easily be 
accomplished in a 3 hour lab period.  After the RNA degradation and concentration 
steps, store the cDNAs at -80o

 
C. 

Your RNA samples will be provided as dry pellets containing 10 µg in microfuge tubes 
(separate tubes for the two samples) 
 
cDNA synthesis 
 

1.  To each sample add (in this order): 
 

  10 µl DEPC-treated water (vial 10 from the Genisphere kit) 
  1 µl RT primer (vial 2) 

One gets the Cy5 capture primer (blue) the other Cy3 capture 
(red). Be sure to write down which gets which here! 

  1 µl SuperaseIn (vial 4) 
 
2.   Mix by flicking the tube gently and flash spin. 
 
3.   Incubate 10 minutes at 75 – 80o

 
C in the heating block.   

4.   Incubate 2 minutes on ice.   
 

5.   Prepare a “master mix” for Reverse Transcriptase 
For the pair of reactions add the following in order 

   8 μl Reverse Transcriptase Buffer (extra vial) 
   2 μl dNTP mix (vial 3) 
   4 μl DTT (100 mM) 
   2 μl Reverse Transcriptase Enzyme  
 

6.   Gently mix and flash spin, then aliquot 8 μl of the mix to each of your 2 tubes 
– the total volume/tube should now be 20 μl.   

 
7.   Incubate 2 h at 42o

 
C.   

RNA degradation 
 

1.  To each tube: Add 3.5 μl 0.5 M NaOH / 50 mM EDTA to stop the reaction and 
degrade the RNA.  

 
2.  Incubate 10 minutes at 65o

 
C in heating block 

3.  Add 5 μl 1 M Tris-HCl, pH 7.5 to neutralize.   
 



4.  Mix the contents of both tubes together into one.   
 
5.  Rinse the now empty tube with 73 μl 1x Tris-EDTA, pH 8.0 (TE buffer) and 

combine with mixed cDNA samples.  Total volume now should be 130 μl.   
 
 
Alternative method to degrade RNA 
 

1.  Make sure contents of tubes are spun down.  
 
2.  Add 1 µl of RNase cocktail (RNase A at 4 mg/ml and RNase H at 1 unit/µl).  

(Note:  the RNase H is fairly expensive and may be omitted without 
significant effect) 
 

3.  Incubate at 37o

 
C for 15-30 min 

4. Mix the contents of both tubes together into one. 
 
5. Rinse the now empty tube with 88 μl 1x Tris-EDTA, pH 8.0 (TE buffer) and 

 combine with  mixed cDNA samples.  Total volume now should be 130 μl.   
 
 
Concentrating the cDNA  
(read these instructions carefully before proceeding so you know what to do!) 
 

1.  Use a Microcon YM-30  
 
2.  Prepare the concentrator by adding 100 μl 1x TE, pH 8.0 to the reservoir 
 
3.  Spin 3 minutes at 13K rpm. 
 
4.  Transfer your sample (130 μl) to the reservoir.   
 
5.  Spin 9 minutes at 13K rpm. 
 
6.  Remove the reservoir – your cDNA is now concentrated on the membrane 
 
7.  Add 5 μl of 1x TE, pH 8.0 to the reservoir without touching the membrane.   
 
8.  Carefully invert reservoir over a fresh tube and spin 2 minutes at 13K rpm. 
 
9.  Carefully measure the amount of liquid recovered with a micropipettor (should  

be 3-10 μl).  
 
10. Put the sample back in this tube (Implementation note:  stopping point if      

  necessary – freeze at -80oC) 



 
First Hybridization 
 
Slide Preparation* 

1.  Incubate microarray slides for at least 60 minutes in 3x SSC, 0.1% SDS, and 
0.1 mg/ml sonicated salmon sperm DNA at room temperature (this serves to 
block the non-specific sites on the slides).   

 
2.  Carefully dip the slides into distilled water and spin dry in a 50 ml conical tube 

with a kim-wipe in the bottom to collect the drips.  Put the slide label side 
down to avoid scratching the array with the kim-wipe.   

 
Alternative procedure for slide preparation:  
 

After the incubation, blow the slide dry with air (connect a piece of tubing with a 
filter tip on the end to house air or to a nitrogen tank).  Don’t blast the slide too 
hard or too long.  Rather, the idea is to chase all the drops of water off the slide 
while it is held at an angle on a paper towel.  If drops of water start to dry in place 
on the array, quickly immerse the slide back into water and start again. You are 
not trying to blow dry the slide, rather you are trying to push the liquid away from 
the spots. If you see streaks at this stage, rewet the slide. If you see dried-on 
streaks, you will have streaks in your final scan.  Store dried slide in a conical 
tube until ready to hybridize.   

 
3.  Thaw the 2x formamide-based hybridization buffer (vial 7).  Incubate at 

55o

 

C for 10 minutes and mix well to make sure all crystals dissolve, then spin 
for 1 minute at 13K rpm to remove any residual particles.  Don’t shake it up 
again! 

4. Add enough DEPC-treated water to your concentrated sample to make 25 μl 
total.   

 
5. Add 25 μl vial 7 
 
6. Mix gently by flicking the tube and flash spin.  
 
7. Incubate at 10 minutes at 80o, then keep at 42o

 
C until ready to put on slide 

8. Transfer the entire cDNA sample (50 μl) to the center of your slide, carefully 
making a line down the length of the slide (don’t touch the slide with pipet tip! 
don’t introduce bubbles into the solution! – better to lose some of the solution 
than have bubbles).   

 
9. Place the short edge of the cover slip on the short edge of the slide.  Gently 

lower the cover slip onto the liquid with a syringe needle, but don’t let it fall 
all the way down.  Pull the cover slip back up, then lower with the needle 



again, and this time, gently let the cover slip fall into place.  Be very careful to 
avoid bubbles at this stage, too.   

 
 

Fig. 1.  Using needle to carefully lower Lifter Slip onto microarray using mock slide as 
guide (pictures from the GCAT web site courtesy of Dr. David Kushner [Dickenson 
College]) 

 
 
 
 
 
 
 
 
 

 
 
Fig. 2.  First Lifter Slip in place on array next to mock slide. 

 
 
 

10.   Place the slide into either a slide hybridization chamber or a 50 ml conical 
tube.  Be sure to include some water in either case to keep the hybridization 
mix from evaporating (the chambers have wells that hold ~20 μl of water; for 
the conical tube, just add ~50 μl to the tube).   

 
11. Incubate the slide at 37o

 

C overnight.  (Implementation note:  this step can go 
for several days if necessary, but check once in awhile to make sure there is 
still some water in the chamber).   

 
Second hybridization  
 
Tubes have been prepared for you containing the wash solutions.  Read the labels 
carefully as they all contain similar ingredients, but at different concentrations.   
 
 
 



Part I – washing the first hybridization mix off the slide 
 
1.   Carefully transfer your slide, coverslip side down, into a tube containing 

Room Temperature 2x SSC + 0.2% SDS.  Slosh gently until the coverslip 
comes off – it may need a little nudge; carefully remove your slide and leave 
the coverslip behind. (You’re trying to avoid scratching the array with the 
cover slip) 

 
2.   Transfer the slide into 55oC 2x SSC + 0.2% SDS and incubate for 15 min at 

55o

 
C.  

3.   Transfer the slide into 2x SSC and incubate for 15 min at room 
temperature (shake gently periodically) 

 
4.   Transfer the slide into 0.2x SSC and incubate for 15 min at room 

temperature (shake gently periodically).  
 

5.   Place the slide label end first in a 50 ml tube with a kim-wipe at the bottom 
and spin 1 minute at 500 rpm (alternatively use the blow-dry method) 

 
 
Part II – preparing the 2nd

 
 hybridization mix 

1.   Thaw 2x-formamide based hybridization buffer (vial 7) and incubate 10 
 minutes at 55o

 
C.  Then spin 1 min. 

  LIGHT SENSITIVE STEPS FROM NOW ON! 
 

2.   Thaw both capture reagents (both vials 1, cover with foil!!!) and the antifade 
reagent (vial 8).   

 
3.   Mix 100 μl hybridization buffer (vial 7) and 1 μl antifade reagent (vial 8).  

This is your antifade-treated hybridization mix. 
 
4.   Vortex the vials 1 for 3 seconds then flash spin.   
 
5.   Mix:  

  25 μl antifade-treated hyb mix (your mix of vial 7 and vial 8) 
  20 μl DEPC-water (vial 10) 
  2.5 μl Cy3 capture reagent (vial 1) 
  2.5 μl Cy5 capture reagent (alternate vial 1) 

 
6. Incubate 10 min at 75o

 

C.  Then pipet 50 μl onto the washed and dried slide 
using the coverslip protocol from yesterday.   



7. Incubate your slide at 37o

 

C for 2.5h.  (Implementation note: this incubation 
can go overnight if necessary).    

Second Wash and Scan 
 
These solutions should have 1 mM DTT added to them to prevent oxidation of the 
fluorescent dyes.  Remember to keep your slide in the dark as much as possible!!!  
Keep your tubes covered with foil during the incubations to help.   
 
Washing the second hybridization mix off the slide 

  
1. Carefully transfer your slide, coverslip side down, into a tube containing Room 
Temperature 2x SSC + 0.2% SDS + 1 mM DTT.  Slosh gently until the 
coverslip comes off – it may need a little nudge; carefully remove your slide and 
leave the coverslip behind. (You’re trying to avoid scratching the array with the 
cover slip) 

 
2. Transfer the slide into 55oC 2x SSC + 0.2% SDS + 1 mM DTT and incubate 
for 15 min at 55o

 
C.  

3. Transfer the slide into 2x SSC + 1 mM DTT and incubate for 15 min at room 
temperature (shake periodically) 

 
4. Transfer the slide into 0.2x SSC + 1 mM DTT and incubate for 15 min at 
room temperature (shake periodically).  

 
5. Place the slide label end first in a 50 ml tube with a kim-wipe at the bottom and 
spin 1 minute at 500 rpm (or use the blow dry method). 

 
Store washed and dried slides in a conical tube covered with foil until ready to scan.  
 
 

*Slide Pretreatment  
 

Some slides need a pretreatment, others, such as those prepared for GCAT at Washington 
University, including these yeast arrays, do not.  This process is used to redistribute the 

DNA on the slides, and helps with spot morphology and hybridization. 
 

1. Steam the DNA side of the slide over boiling dH2

 

O.  Do not allow visible 
droplets to form on the slide.  

2. Immediately place the slide (DNA side up) on a heat block or hot plate set to 
100o

 
C or slightly less to snap dry.  Take off after 5 seconds. 

3. Repeat steam step, followed by drying step.  Allow the slide to sit on the heat 
block for 1 minute this time.  Allow slide to cool to room temperature. 



 
 
Alternate Slide Pretreatment Protocol (from Charles Hauser, St. Edwards 
University) 
 

1.  Create a humidifier by placing slide (DNA side down) over warm water. Cover to 
create a humidified compartment (see Figure 3 below).  

 
2. Place the slide (DNA side up) on a heat block or hot plate to 100o

 

C or slightly less 
to snap dry.  Take off after 5 seconds. 

3. Repeat humidified step, followed by drying step.  Allow the slide to sit on the heat 
block for 1 minute.  Allow slide to cool to room temperature. 

 
 

  
 

Figure 3: H 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Installing Java

If you intend to install MagicTool on your computer, you will need the Sun version of
Java.

a. On a PC, go to http://java.com, and click on “Get It Now”.  The correct
version of the code should download and begin to install automatically.
Complete installation instructions, with screen shots, are at
http://java.com/en/download/help/win_auto.jsp .

b. On Mac, Java is already included.  (OS X 10.2.6 or later is required.)

Installing MagicTool

1. Create a folder called magictool on your computer.
a. On a PC, we recommend that you place this folder directly under the C:

drive, or a folder within the C: drive that has no spaces in its name.  This
specifically excludes, for example, the Desktop (which is under
“Documents and Settings”) or “Program Files.”

b. On a Mac, we recommend that you place this folder in any convenient
place, but not under a folder that contains spaces in its name.

2. Go to www.bio.davidson.edu/magic, and follow the links to download the
software, or go directly to
http://www.bio.davidson.edu/projects/magic/agreement.html.

3. Download the file called MagicTool.jar to the magictool folder you created in
step (1).

4. On most operating systems, you can now run MagicTool by simply double-
clicking on the file MagicTool.jar.  You will know it is starting when the magic
wand waves across the MagicTool logo on the screen.  If the jar file does not start
the program, it may be because Java is not installed properly on your machine.
Be sure you have completed the instructions for Installing Java before proceeding
to step (5).

5.  This step sets up a script so you can run MagicTool with extra memory.  This is
important for working with large data files.

a. On a PC:
 i. Download the file called Magic_launch.bat to the magictool folder.
 ii. Double click on Magic_launch.bat.  This should cause a DOS

command window to open, then MagicTool should start.
b. On a Mac:

 i. Download the file called Magic_Launch.txt
 ii. Open Script Editor (this program is under the Applications,

AppleScript folder).



 iii. In Script Editor, go to Open Script… under the File menu.  Select
the file Magic_Launch.txt.  The text from the file should now
appear in the lower window in Script Editor.

 iv. In Script Editor, go to Save As under the File menu, remove the
.txt extension from the filename, select Application under the
Format menu, and select the magictool folder as the destination.

 v. Open a finder window and open the magictool folder, but do not
use favorites, shortcuts or the multicolumn finder display.  (In
other words, use View as Icons or View as List.)  Double click on
Magic_Launch, which should start MagicTool.
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The Goal of MAGIC Tool 
The purpose of MAGIC Tool is to allow the user to begin with DNA microarray tiff files 

and end with biologically meaningful information. Comparative hybridization data (glass chips) 
and Affymetrix data are compatible with MAGIC Tool. You can start with tiff files or expression 
files (spreadsheet of ratios or absolute expression levels).  

MAGIC Tool was created with the novice in mind but it is not a “dumbed down” 
program. In fact, MAGIC Tool is designed to illuminate the algorithms being used rather than be 
a black box that produces results with little input from the user. MAGIC Tool allows the user to 
change parameters for clustering, data quantification etc. This User’s Guide will teach you how 
to use the software but leaves the theoretical explanations to the Instructor’s Guide.  
 
Users are also encouraged to visit related sites: 

MAGIC web site: http://www.bio.davidson.edu/MAGIC  
Online MAGIC Tool lab: http://gcat.davidson.edu/GCAT/workshop2/derisi_lab.html  
Tutorial for Clustering:  http://gcat.davidson.edu/DGPB/clust/home.htm 
GCAT: http://www.bio.davidson.edu/GCAT/  
Genomics Course: http://www.bio.davidson.edu/genomics 

 
MAGIC Tool support is provided by the authors and student assistants (with NSF support). 
Email magictool.help@gmail.com or laheyer@davidson.edu for assistance.  You can also email 
the GCAT listserv for help, as there are many MAGIC Tool users on this list. See 
http://www.bio.davidson.edu/projects/gcat/GCAT-L.html for more information about the GCAT 
listserv. 
 
Release Information 
The following features were added in MAGIC Tool 2.1: 

• Users can move multiple grids at once with the shift key. 
• Users can combine multiple grid files. 
• Spot flagging is significantly faster 
• In Segmentation, users can visualize MA and RI plots. 
• In Segmentation, users can choose whether their automatic flagging criteria should be 

combined with a Boolean AND (all) or OR (any). 
• Raw data for all genes, including blanks/empties, is now printed in the raw file, if the 

user chooses to create a raw file. 
• In Explore, users can create box plots of expression files and groups to see the five-

number summary (minimum, lower quartile, median, upper quartile, and maximum). 
• In Explore, the user can now find genes greater than or less than a maximum, minimum, 

or average absolute value. 
• Loading of projects is significantly faster. 
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Installing MAGIC Tool 
MAGIC Tool is distributed freely by Davidson College under the GNU public license. New 
versions of MAGIC Tool can be downloaded from the MAGIC Tool web page: 
http://www.bio.davidson.edu/MAGIC 
Beginning with version 1.5, the MAGIC Tool download consist of a single zip archive file, 
called MAGIC_Tool_x-y.zip, which you must decompress to see the MAGIC Tool folder, called 
MAGIC_Tool_x-y.  The contents of the folder are described in the following table. 
 
File Name Description 
Magic_launch.bat Launcher for Windows (Executable) 
MAGIC_launch Launcher for Mac OS X (Executable) 
MagicTool.jar MAGIC Tool code (called by launcher) 
MAGIC Users Guide v2-1.pdf Users guide (this file) 
Installation_guide.pdf Detailed instructions for installing and running MAGIC Tool 
MAGIC Instructor’s Guide.pdf Instructors guide with additional algorithmic details 
Plugins Necessary files for Java TreeView 

 
After you unzip the downloaded file, navigate into the MAGIC_Tool_x-y folder and double click 
on the appropriate launcher file for your operating system.  After a few seconds, the MAGIC 
Tool “splash screen” logo should appear, and in a few more seconds the program should be open.  
If the launcher does not properly start the MAGIC Tool program, see the MAGIC installation 
guide for detailed instructions. 
Sample files and source code for MAGIC Tool are also available at the MAGIC Tool Website at 
http://www.bio.davidson.edu/magic/. 
 

System Requirements 
• Windows 2000 or later OR Mac OS X 10.4 or later OR Unix/Linux  
• Java JRE 1.5 (5.0) or later 
• 512 MB RAM required for full size arrays; 1 GB of RAM recommended.  
• Several hundred MB of hard drive space available, depending on the files you work with 

and what type of analyses you perform 
 
 

Vocabulary 
Addressing is the short process of telling MAGIC Tool the layout of the spots and grids in the 
tiff file as viewed within MAGIC.  
 
Chip is a synonym for a microarray.  
 
Feature is a synonym for a single spot on a microarray.  
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Flag is a verb that means you mark a particular spot to indicate its data are not reliable. This may 
be due to high background in the area, a dust bunny sitting on the spot, etc.  
 
Grid is a compact arrangement of spots with even spacing. 
 
Gridding is the process that MAGIC uses to find the spots on your tiff files 
 
Metagrid is a higher order level of organization. A set of grids are organized into groups called 
metagrids. For a more complete description, see this web page 
<www.bio.davidson.edu/projects/GCAT/Griding.html>.  
 
Segmentation is the process of finding the signal and distinguishing it from the background. 
There are three methods in MAGIC. Fixed circle is the fastest, and recommended for most 
purposes.  Adaptive circle and seeded region growing are also provided.   
 
Tiff files (e.g. file_name.tif) are the raw image data that are produced when a DNA microarray is 
scanned. One tiff file is produced for each color on each chip.  
 
Getting Started 
 
Overview of Steps 
     If you start with two tiff files, you will need to perform the following steps in order to 
produce clusters or explore your data.  
 
1) Start a Project 
2) Add files to project (recommended) 
3) Load tiff files 
4) Load gene list 
5) Locate spots (Gridding and Addressing) 
6) Distinguish signal from background and generate expression file (Segmentation) 
7) Repeat steps 1-6 for all experimental conditions, appending to previous data and forming an 
expression file with several columns 
8) Log-transform ratios 
9) Add gene info to expression file (optional) 
10) Explore data (recommended) 
11) Filter data (recommended) 
 
The following steps can only be performed if you have three or more columns in your 
expression file: 
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12) Calculate dissimilarity (e.g. 1 – correlation) 
13) Cluster genes  
 
(1) Start a Project 
Under the Project menu, create a new Project. You can save this project in a convenient location 
on your hard drive. We recommend that you NOT use the MAGIC Tool software folder, since 
you may want to open this project with a newer version of MAGIC Tool in the future. Project 
files are automatically given a name that ends with the suffix “.gprj” and stored in a folder by the 
same name, automatically created by MAGIC Tool. 
 
(2) Add Files to Project 
We recommend that you copy files into your project, either through the Project menu options, or 
by dragging the files into the project folder and then selecting “Update Project” under the Project 
menu.  Adding files to your project organizes your files for you into default folders, and 
simplifies future steps in the analysis. 
 
(3) Load Tiff Files (Control R and Control G) 
Under the Build Expression File menu, load the red and 
green tiff image pairs. Remember that red is a longer 
wavelength than green, so if your files are identified by the 
wavelengths, you should still be able to determine which 
color is which.  
 
(4) Load Gene List (Control X) 
Load the gene list, also under the Build Expression File menu. This should be a text file with 
suffix of “.txt” and be in MAGIC Tool format. (See full instructions below.) 
 
(5) Locate Spots 
Under the Build Expression File, select 
Addressing/Gridding option.  
There are several distinct steps in Addressing and 
Gridding, which we will walk through one by one in 
the following paragraphs (a) – (j). 
 
(a) Decide whether you want to create a new grid or load a saved grid.  
 
Unless you have done this before, you will need to create a new grid.  If you have a previously-
created grid that is appropriate for this image, you can simply load it by choosing “Load Saved 
Grid” from the Addressing/Gridding submenu, or by pressing Control+W, and proceed directly 
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to Step 6, segmentation. To create a new grid, choose “Create/Edit Grid” from the 
Addressing/Gridding submenu, shown above, or press Control+A.  
 
When you create a new grid, you will get a warning window that is normal and intentional. The 
warning is a reminder that you MUST understand how your spots are arranged on your 
microarray. For more information about this step, consult  
http://gcat.davidson.edu/GCAT/workshop2/addressing_MT.html  
 

 
 
Do not proceed any further if you do not understand the organization of your microarray.  
 
Failure to perform Addressing and Gridding correctly will result in features being 
incorrectly identified.  
 
You should see two windows. One will show your merged tiff files and the other will permit you 
to address the tiff file. The smaller (moveable) window will ask you information about how your 
microarray is organized; this is called addressing.  
 
(b)  Answer the four questions in 
the Grid Setup window.  
 
First, enter the total number of grids 
on the tiff file.  
 
Answering the remaining three 
questions is the easiest step to make a 
disastrous mistake. Answer the three 
questions based on the way you are 
seeing your microarray at this 
time. Here is an example to illustrate 
the point. Suppose the image has been rotated 90 degrees clockwise compared to the way you 
normally think about your chip, but your gene list is not altered to account for the rotation.  Then 
the way you are seeing your tiff file will not match what you think of as your microarray 



 
 

7 

organization. The following two images show the layout of the microarray before and after 
rotation.  
 
Before rotation, the spots would be described as being numbered from top to bottom and from 
left to right, with the second spot horizontal of the first spot (just like you would read a book).  
These are the default options. However, it is important that you keep track of the spots if the chip 
is rotated.  

 
After rotation, the spots are numbered top to bottom, right to left, and the second spot is now 
vertical from (below) the first spot. Study the before and after rotation images, to understand 
how the spots have moved and why the new orientation 
resulted in the addressing provided in the figure above. Then 
study all the other options for numbering spots in the table 
below.  
 
Use the pattern of missing spots and the comments in your 
gene list to help you become reoriented if necessary. The 
layout and number of grids is an easy way to orient yourself 
as well.  
 
If you make a mistake, you can change your answers to these 
addressing problems by selecting “Grid properties…” under 
the file menu of the gridding window. 
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(c)  Begin gridding.  
The goal of gridding is to tell MAGIC where the spots within each grid are located. This feature 
is one of the best innovations in MAGIC Tool. Before you begin, you may want to adjust the 
contrast to help illuminate faint spots. To do this, slide the indicator that is currently pointing to 
100% contrast near the top of this window. Adjusting contrast does NOT affect the raw data; it 
only allows you to see spots better for this step. 
  
The number one tab should be selected as the default when you begin gridding. The tab numbers 
on the microarray correspond to the grid numbers. Selecting tab #1 indicates you are working 
with grid #1 (based on the gene list order). You may begin with a different grid if you wish, but 
be sure to keep straight where each grid is on the microarray. Again, if you do not follow this 
procedure of matching grid numbers with tab numbers, you will cause the features to be 
incorrectly identified.  Grid #1 is the grid that contains spot #1, corresponding to gene #1 in the 
gene list.   
 
(d)  Center current grid in gridding window. 
Scroll and zoom the image until you can see the first grid as defined by the gene list. To zoom in, 
click on the “Zoom In” button and then click on the grid where you want the zoom to center. 
Remember that spots and genes do not change their numbers with image rotation. In the example 
above where the image is rotated 90 degrees clockwise, the first grid would be the grid in the top 
right corner.  
 



 
 

9 

(e)  Enter grid location information using “3-click” mouse method. 
a. Click on the button that says “Set Top Left Spot” and then click on 
the center of the top left spot of the grid.  
 
b. Click on the button that says “Set Top Right Spot” and then click 
on the center of the top right spot.  
 
c. Click on the button that says “Set Bottom Row” and then click on 
the center of any spot in the bottom row. Choose a big round spot to 
make this step easier. 
 
d. Enter the number of rows and columns.  This is to be answered 
based on the way you are currently viewing the tiff file. In this 
example, there are 24 rows and 12 columns. 
 
e. Click the “Update” button. At this time, you should see all the 
spots in the first grid surrounded by boxes as shown in the figure. 
 
At any time in the gridding process, you can mouse over a spot and 
identify its location (x and y coordinates in pixels, row, column and spot number) as well as its 
identity from the gene list. This information is displayed in the bottom left corner and is 
especially useful for 
navigating during 
segmentation.  
 
(f)  Adjust the grid to center spots. 
At this time, see if the spots look centered in the boxes. If not, then adjust the position of the 
boxes either by clicking on the appropriate button and then the correct spot, by manually typing 
in numbers to adjust the boxes, or by adjusting the grid with the mouse. If you click anywhere 
inside the grid, you can drag the entire grid to a new location. The grid can be resized from a 
corner by clicking on one of the gray dots and dragging the mouse. As you drag, the new size 
and position of the grid will be displayed. Finally, if you click one of the rotation buttons, the 
entire grid will rotate around its center, allowing you to adjust for slightly tilted grids on your 
images. If you decide to manually adjust the grid by changing the values in the boxes, note that 
the position of the mouse is displayed in the bottom left corner of the window so you can 
determine if the numbers should be bigger or smaller to shift the boxes in the correct direction. 
Gridding takes a bit of practice, but it is MUCH easier than most other methods for gridding.  
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(g)  Define the next grid.  
If you only have one grid, skip to step (i). If you have more than one grid, continue. Once the 
first grid is properly gridded (surrounded with boxes with the spots in the centers), it is time to 
repeat this process for grid #2.  Be sure you know whether grid #2 is left, right, above or below 
grid #1.  
Press and hold the Control (Ctrl) key on the keyboard, then click on the middle of the top left 
spot of grid #2. The same grid, translated to the location specified by your mouse click, will 
appear as grid #2, and all the numbers in the boxes on the left will be filled in automatically. If 
you release the Control key, you can adjust the grid just as you did in step f. Repeat this process 
for all grids. 
 
(h)  Continue gridding. 
Continue step (g) for each remaining grid on the microarray, so that all the grids on the 
microarray are boxed with the spots in the center of the boxes. At any time, you can change your 
answers to the four addressing problems by selecting “Grid properties…” under the file menu of 
the gridding window.  
If you need to move multiple grids at once, press and hold the Shift key, then click on each grid 
that you want to move. As the grids are selected, they will turn blue. Once all the grids you want 
to move have turned blue, click and drag inside any one of the grids to move all of the grids at 
once. You can also rotate multiple grids at once by selecting them the same way and clicking the 
one of the rotation buttons. 
You may stop at any time and save your work so far, using the “Save Current Grid As…” under 
the file menu of the gridding window. Next time you begin Addressing/Gridding, you can simply 
open this saved grid file. 
 
If you create two different grid files, you can combine them using the “Combine and Load Grid 
Files” option on the Build Expression File menu. When you choose this menu option, you’ll be 
prompted to pick the first grid file. From this file, MAGIC Tool will take the grid orientation 
details that you determined in step (b) above, in addition to taking all the grids in this file. Once 
you select the first grid file, you’ll then be prompted to select the second grid file, and then the 
new filename for the combined grid file. MAGIC Tool takes the grids from the first file as the 
first n grids in the new file followed by the grids from the second file as the remainder of the 
grids. You should make sure that the grids are combined in the right order. Once the grid file has 
been created, MAGIC Tool will automatically load the combined grid file, and you can edit the 
grid by choosing “Create/Edit Grid,” or continue straight on to Step 6 (Segmentation). 
 
You can also save a snapshot of the combined tiff images at any time before or during the 
gridding process. You can save the image as tiff, jpg or gif. Tiff format works on all drawing and 
word processing programs so it is a universal format. Jpeg is good for images such as this that 
have many shades, like a photograph. Gif is the simplest format but may lose some of the 
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subtlety of your original file. This saved merged image is useful if you want to take a picture of 
the overall grid and can be used for publishing or teaching.  
 
(i)  Complete the gridding process. 
When you have finished gridding all your grids, click on the “Done!” button.  If you have not 
already saved your grid, you will be prompted to do so before moving on to the next step. A grid 
file should be saved in your project folder and automatically given a suffix of “.grid” (so you do 
not need to type .grid yourself).   
 
If the number of genes in your gene list and the number of spots you gridded do not match, you 
will get an error message. You must have exactly one grid square for each line (gene or gene 
replicate) in the gene list. If not, you probably will make an error identifying the spots later so 
you are required to fix this problem now. If your gene list and the number of gridded spots 
match, then you will be informed of the total number of spots and allowed to save the grid file 
for further use.  
 
(j) Flag problematic spots (optional) 
If there are spots on your grid that you do not wish to be used in your data 
analysis, you can choose to exclude the data at this stage, before the 
creation of the expression file. To do this, choose “Spot Flagging” from the 
Addressing/Gridding submenu, or press Control+F. 
 
Just as in the gridding window, you can zoom in and out, and fit the image 
to the screen. Also like the gridding window, when you hover the mouse 
pointer over a spot, the status bar at the bottom of the window will display 
information about the gene. If you see a spot that you do not want included 
in your calculations, click on it. A blue “X” will appear on top of the spot 
marking it as “flagged” to be ignored by segmentation. 
 

To see what genes have 
been flagged, or to choose genes to be 
flagged or not be flagged by their gene name, 
choose “Flagging by Gene Name” from the 
Flagging menu. In the dialog that appears, the 
unflagged genes (the genes that will be used) 
are on the left, and the flagged genes appear 
on the right. To flag a gene, click its entry in 
the list on the left, then click “Add >>.” To 
unflag a gene, click its entry in the list on the 
right, then click “<< Remove.” You can 
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select multiple items on the list by pressing and holding the Control key, then clicking on each 
item, or, to select a range of items, click the first, press and hold the Shift key, then click the last. 
Once you press the Add or Remove button, the changes become visible on the image behind the 
Flagging by Gene Name window. Note that genes with names “empty,” “missing,” “none,” or 
“blank” are automatically excluded from the expression file, so they need not be flagged by 
name. When you’re finished flagging by gene name, click “DONE!” 
 
From the main Flagging window, you can also choose to save or load flag files. These files have 
the extension “.flag” and are stored in the “flags” subfolder of the project folder. The saving 
process works like the grid file saving described in paragraphs (h) and (i) above, but you are not 
automatically prompted to save a flag file. To load a flag file, open the Spot Flagging window, 
then choose “Load Saved Flags…” from the File menu. From that window, you can choose the 
flag file to load. Note that the number of grids and number of spots per grid must match the 
current grid to be able to load a flag file. 
 
(6) Distinguish signal from background and generate expression file 
(Segmentation; Control S) 
 
We will break this step into three parts, described in paragraphs 
(a) – (d). 
 
(a)  Select a method for distinguishing signal from 
background.  
 
Fixed Circle: The most common way is to simply place a circle 
in the middle of the squares you drew for gridding. This is called 
fixed circle, though you can adjust the radius of this circle as 
shown in the figure to the right. Note that even if the circle is 
bigger than the box, only signal inside the box is used for 
measuring signal.  
 
 
Adaptive Circle: The second method to choose from is the adaptive 
circle. The size and the location of the circle changes, depending of the 
size on the feature on the microarray. See the instructors guide for more 
details on this algorithm.  
 
Seeded Region Growing: Seeded region growing is designed to find the 
signal for each spot based on the distribution of the signal. This method 
for segmentation looks for the brightest pixel near the center of the grid 
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square, and then connects all pixels adjacent to this pixel and connects them into one shape. The 
algorithm simultaneously connects pixels to background and foreground regions, continuing 
until all pixels are in one of the regions. A user-specified threshold determines which pixels can 
be used to “seed” the regions. This is the slowest method since each pixel is processed 
individually. The bigger the threshold, typically the bigger the spot will be defined.  
 
(b)  Choose a Ratio Method 
 
The final product of segmentation is a list of gene expression ratios. 
There are four choices for how to combine the four numerical values 
in segmentation (red foreground, red background, green foreground, 
green background) to determine a ratio for each feature on the 
microarray.  Total signal adds the values in all the pixels designated as signal, and divides the red 
total by the green total.  Average signal averages the values of signal pixels. The remaining two 
options subtract the background (total or average, respectively) before dividing the red by the 
green to get the ratio. Background subtraction introduces the possibility of a negative value (if 
background is greater than foreground). MAGIC Tool sets a negative value to 0. If background is 
greater than or equal to foreground in the green signal, this results in dividing by 0.  In this case, 
MAGIC Tool resets the ratio to 998 or 999 (depending on whether the numerator of red 
foreground minus red background was also 0, or was greater than 0). 
 
You can navigate around the spots, noting the summary of each spot’s data below, to visually 
verify that the gridding and segmentation were performed adequately. This inspection gives you 
a chance to note any features you think should not be considered during subsequent data 
analysis.  
 
(c) Automatically Flag Spots (optional) 
Once you have chosen your segmentation method and ratio 
method, you can set criteria such that if any spot fails to meet the 
criteria, its ratio will not be included in the expression file. To do 
so, click on the “Automatic Flagging Options” button. Here, you 
can enter threshold values for the automatic flagging criteria, and 
choose whether to flag a spot if any (Boolean OR) or all 
(Boolean AND) of the criteria are met for that spot. When you 
click OK, you will be prompted whether or not to do calculations 
to find the flagging status of the spots. In the process, MAGIC 
Tool also computes the average and standard deviation for each 
of the four data points used in calculations (even if you leave all 
the thresholds blank). You can then use this data to refine your 
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automatic flagging criteria. For example, you might wish to flag genes whose total red 
foreground or total green foreground is less than two standard deviations below the mean. 
 
To see on a grid what spots have been flagged, open the Spot 
Flagging window from the Addressing/Gridding submenu. All 
spots that have been automatically flagged will be marked with an 
orange “X.” These flags can only be changed by adjusting the 
automatic flagging criteria, but you can add or remove manual 
flags at this stage as well. If a spot is both manually and 
automatically flagged, a blue “X” will be shown superimposed on 
the spot instead of the orange “X.” If you unflag manually flagged 
spot that is also automatically flagged, the “X” will turn orange and 
the spot will remain flagged. 
If you adjust the automatic flagging options, you must recalculate the data to have the revised 
automatic flags appear on the Spot Flagging display. When you’ve finished adjusting the options 
to your satisfaction, continue to generate the expression file. 
 
(d)  Generate expression file 
 
Click on “Create Expression File” when you are satisfied with the segmentation process. This 
will generate an expression file, which was the goal of all the previous steps. An expression file 
contains the ratios for each spot (red ÷ green), according to the method chosen. MAGIC will 
ignore certain entries in the gene name column (“blank”, “EMPTY”, “missing” and “none”; case 
insensitive). The ratios will be used for all subsequent data analysis. You do not need the tiff 
files any more.  
 
Unless you have already created an 
expression file for this microarray, 
you should check the box next to 
“Create Expression File?”, and 
name the expression file and the 
column (e.g. time point, treatment, 
etc.). You can append this column 
to an existing file or create a new 
expression file consisting of this 
column only. MAGIC Tool will 
never erase one of your files, so if 
you append this column to an 
existing expression file, that file 
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will remain as it was on your computer, and a new file will be created with the current column 
appended to the right of the columns in the existing file. 
 
In the Expression File Parameters dialog box, you can also choose whether to save the “raw” 
data that was used to compute the expression ratios. If you check the box next to “Create Raw 
Data File,” a tab-delimited text file will be created that contains 9 columns. The first column is 
the gene name.  The next four columns are the pixel totals for red foreground, red background, 
green foreground, and green background.  The final four columns are the pixel averages for these 
same four values. The raw data file will have the same name as your column label, with the 
extension “.raw”.  Your computer may think this is an image file, but it is just text. You can open 
the raw file from inside Excel (you may have to force it to look at files of all types for it to open).  
In future versions of MAGIC Tool, you will be able to use the raw data to filter your expression 
data, for example when signals are too weak to be reliable.  In the meantime, this type of filtering 
must be done outside of MAGIC Tool. 
 
(7) Repeat steps 1-6 for all experimental conditions 
 
If you have multiple time points or experimental conditions in your study, you should repeat 
steps 1-6 for each condition before continuing to the data manipulations of step 8.  Once you 
have all data in one file, continue with the remaining steps.  If you have only one condition, there 
will only be one column of data in your file, and you can do steps 8-11. 
 
(8) Manipulate Data 
 
Although this step sounds like a point and 
click way to conduct scientific fraud, it is 
actually a beneficial step to consider (see 
Instructor’s Guide). You can: transform 
or normalize your data; temporarily 
restrict your data analysis to a subset of 
experimental conditions (e.g. certain time points, or dye reversals); filter out some features that 
don’t meet certain criteria; or generate a random set of data to use as a comparison.  
 
If you manipulate your data, you will generate a collection of new expression files with names 
that match the manipulation. MAGIC Tool will never erase your data, so the result of any of 
these data manipulations is stored in a new file, and the original file still exists as it was before 
the manipulation. Be sure to verify which expression 
file you are working with in subsequent steps. It is 
easy to get confused. The current file is checked on 
the list under “Working Expression File.” 
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If you are working with ratio data, you should log transform your data. This will convert your 
ratios into values that are on the same numerical scale so that a gene that is 4 fold induced (+2) 
has the same numerical value as a gene that is 4 fold repressed (-2 instead of 0.25). Typically, 
this is done using a log2 transformation to indicate the number of two fold changes in gene 
expression (thus 4 fold changes resulted in numerical values of 2).   
 
If you are working with absolute expression values (e.g. Affymetrix data) you may want to 
normalize your ratios. Normalizing in this case is on a gene-by-gene basis.  For each gene, the 
mean value across the columns is subtracted from each value, resulting in an expression profile 
with a mean of 0. Then each value is divided by the standard deviation across the columns, 
resulting in an expression profile with a standard deviation of 1. This type of normalization is 
especially useful for viewing groups of genes on the same scale, so similarities are more easily 
seen when absolute expression levels vary greatly from gene to gene. Later, when you plot the 
various groups or clusters of genes, you can view the data in as normalized or original values, as 
shown in the following figure.  
 

 
 
(9) Add gene info to expression file 
 
Now is the best time to add gene 
annotations to your expression file, 
so the annotations will be visible 
when you explore your data. Under 
the Expression menu, choose 
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“Import Gene Info…” Select the expression file to which you wish to add annotations, and select 
the file containing the annotations. A file containing such annotations for yeast is included in the 
sample files. A similar file can be formed for any organism by creating a tab delimited text file 
with the appropriate columns (alias, chromosome, location on chromosome, biological process, 
molecular function, and cellular component). 
 
(10) Explore data 
 
Data exploration is a way to get familiar with 
your data, and find important functional 
relationships that may not be apparent from 
clustering. For example, you can find all genes 
that were upregulated after a certain time point, 
or all genes that increased their fold repression 
four times or greater at any time point. Once you 
have identified such genes, you can display them 
in a number of dynamic ways and save these 
images for publishing or teaching.  
 
If you have not explored the current expression 
file before and saved group files, the only 
existing group is the entire expression file. You 
can create a temporary group by clicking “Find 
Genes Matching Criteria…” and filling out the form to find the genes and expression patterns 
you are interested in.  If you want a group to be available the next time you explore your data, 
and the next time you open this 
project, you need to save the group 
file (which will automatically be 
given an extension of “.grp”.  A 
group file is just a text file that lists 
the names of the genes in the group. 
Any saved groups will then be listed 
under “Select Existing Group.”  A 
group of genes can also be saved as 
an expression file, which saves all 
columns of ratios or log-ratios along 
with the gene names. 
 
Each of the displays on the left hand 
side of the Exploring window gives 
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you a different visualization of your data. The “Plot Selected Group” display is shown here, with 
gene YER104W highlighted. Note that the annotations of this gene can be revealed above the 
plot of the group. This group was formed by finding all genes whose minimum value was less 
than -2. Interestingly, the group seems to consist of two distinct sub-groups: genes that are 
upregulated early and downregulated later, and genes that have the opposite profile. 
 
(11) Filter data 
 
You should filter your data to remove uninteresting genes before proceeding to the next steps. 
For example, you might keep only those genes whose expression pattern has a sufficiently large 
standard deviation across the columns (in other words, whose expression is not constant). Or you 
might remove genes with unreliable ratios (including those involving a division by 0). It is 
important that your expression file be as small as possible, without losing important information, 
before beginning the clustering process.  You can filter by saving the results of queries in the 
“Exploring” window as an expression file. 
 
(12) Calculate dissimilarities 
 
To form clusters of similar genes you need a way to compare the expression profiles of different 
genes. In this step, you will generate a huge table of “dissimilarities,” measuring the difference 
between every pair of gene expression patterns. This step can take a very long time for a large 
number of genes. Be sure you have filtered your data suitably, and that you know you will learn 
something from the clustering process before you begin this step. 
 
Under the Expression menu, choose “Dissimilarities” and then “compute”. When you do this, a 
window will appear where you have to choose from three choices. This is another decision that 
will affect the data analysis.  
 
The most common 
method is the default, 
which is 1 – correlation. 
The second method, 1 – 
abs(correlation), or 

! 

1" correlation , is 
similar to the 1 – 
correlation method, but 
the absolute value of the 
correlation coefficient is 
taken before that number 
is subtracted from 1. 
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This method can give you a measure of how closely related genes appear to be without regard for 
if the correlation is positive or negative. The other two methods are described in the Instructor’s 
Guide. When this step is complete, MAGIC Tool generates a dissimilarity file, which you can 
name in the output file box. The file will automatically be given the suffix “.dis”. Click on OK to 
begin the computation process. The progress is monitored in a popup scale bar (not shown here). 
You can calculate dissimilarities on any expression file (.exp) but you should use your 
transformed ratios rather than non-transformed ratios. You can also use transformed and 
normalized expression files containing absolute expression values. Because correlation and 
distance calculations have no meaning if you have fewer than three columns, you will not be able 
to calculate dissimilarities if you have two or fewer columns.  
 
(13) Cluster genes 
 
At this point, you can generate a series of clusters using four different methods. Clustering is a 
very popular process for DNA microarrays, so we will describe this first, but remember that 
exploration is equally valid and may tell you more about your genes and experimental conditions 
than clustering can. Exploring your data can be performed any time after segmentation. All you 
need to explore are expression files (*.exp).  
 
With MAGIC Tool, there are four ways to cluster genes. You can cluster from any dissimilarity 
file. First you have to calculate the clusters and then you can display them in a variety of ways. 
The most common way to cluster is called hierarchical clustering, which you can do with 
MAGIC. However, we prefer Q-T clustering (see Instructor’s Guide for details), but Hierarchical 
Clustering is the only format currently compatible with the data visualization program Java 
TreeView. You can also cluster by k-means or supervised clustering.  
 
Once you have clustered the genes, you can display the results in several ways. MAGIC allows 
you to view these clusters in a variety of dynamic displays. Each display can be saved as an 
image file for publishing or teaching. Display options are addressed in more detail later in this 
manual.  
 
Automating Tasks 
     As your datasets get bigger, the time it will take to make all the necessary calculations will 
increase rapidly. Therefore, MAGIC Tool allows you to establish a list of tasks to be performed 
in sequence. You can tell MAGIC Tool to begin a series of steps and then walk away from your 
computer. MAGIC Tool will perform this sequence of tasks while you do other things. For 
example, you can establish a list of tasks to perform and go home for the night. When you return 
the next morning, MAGIC will have completed the series of tasks.  
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Closing Comments 
     This section was intended as a way to get you launched into the MAGIC Tool way of working 
with DNA microarrays. MAGIC allows you to compare the consequences of different choices 
for quantifying, comparing and clustering the same raw dataset. This capacity to compare 
methods is a powerful way to understand better the assumptions and implications inherent in data 
analysis as published each week. MAGIC allows you to explore data and data analysis during the 
early days of DNA microarrays when the research community has not settled upon standards for 
comparing results. MAGIC was designed to empower the user and make DNA microarrays more 
approachable for a wider audience. In the following section, every option available in MAGIC 
Tool will be spelled out so you can utilize the full potential of MAGIC Tool.  
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Complete List of MAGIC Tool Options 
 

Project Menu 
 
New Project (Control N) 
This begins a new project. A project is a way of organizing all related 
MAGIC Tool work in a folder. The name you give to the project is 
the name of the folder, and the folder is automatically created by 
MAGIC Tool.  Each project name should be unique and descriptive. 
Within the folder created by MAGIC Tool will be a file that ends 
with the suffix “.gprj”. All subsequent steps and files will be stored 
automatically in this project folder, until you start another new 
project.  The .gprj file is a text file that is essentially a table of 
contents of your project. 
 
Load Project (Control L) 
This allows you to reopen a previous project. Navigate to the location of the project on your hard 
drive, and select the .gprj file within the project folder. 
 
Close Project (Control P) 
Allows you to stop a project without quitting MAGIC Tool completely. You can also stop a 
project by opening a new project and confirming that you wish to close the currently open 
project.  
 
Add File…. 
Allows you to add files (e.g. tiff files, gene lists, info files, existing expression files) from other 
projects to your current project. You will be directed to a window from which you can click your 
way through the hard drive in search of the files you want to add. Holding down Shift and 
clicking allows you to select a consecutive range of files. (On Windows, you can hold down the 
control key and click on multiple files to select them.) 
 
Add Directory….. 
Alows you to add all files in the selected folder to your current project. 
 
Remove File…. 
Lets you remove unwanted files from your current project folder. You can also delete files by 
writing over the older version (you will be prompted to verify you want to write over the existing 
file with the same name).  
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Update Project…. 
Allows you to drag files into existing folders and then update the currently active project. This 
allows the user to quickly move tiff, grid, expression, dissimilarity, and cluster files around and 
then utilize them in different projects.  
 
Project Properties… 
Allows you to modify the default properties and configure the behavior of MAGIC Tool.  There 
are three tabs, each containing properties of different types. 
 

Data Handling: Currently the only data handling option is how to handle missing data. 
You can choose to remove or ignore any genes in your current project that are missing 
data. When a DNA microarray is printed, some features will be missing and therefore you 
cannot collect data for this gene. If you choose to remove all genes missing data, then 
genes missing any data from one or more columns will not be used for calculating 
dissimilarities. If you choose to ignore, you will be prompted for what percentage of 
possible data (in percent) must be available for a gene to be included in your data 
analysis. This allows you to work with genes that are missing data from less than that 
percentage of columns. Genes missing more than the input threshold percentage of 
columns will be removed. 
 
Image Saving: Controls maximum image size saved from MAGIC Tool 
 
Group Files: There are two options under this tab.  The first, “New Expression Files 
Carry Group Files When:” controls how group files go along with expression files.  This 
option comes into play whenever you create a new expression file from an existing 
expression file, for example by log-transforming, adding information, filtering, 
normalizing or limiting data. Since a group file is simply a list of genes, you may wish 
groups that you selected based on values in an earlier version of the expression data to be 
accessible after you do one of the above processes to create a new expression file.  The 
default setting is Always, meaning all group files are copied to the folder containing the 
new expression file.  You can also choose to never copy group files, or to only copy the 
group files when the expression data itself was not changed (e.g. when adding info to the 
expression file). 

 
Exit (Control Q) 
This quits MAGIC Tool. All completed steps and files will be saved in your project folder. Steps 
only partially completed will be lost. Open tiff files will not be reopened when the project is 
opened next. 
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Build Expression File Menu 

 
Load Image Pair…. (Control R and Control G) 
     This allows you to browse your hard drive to find the 
tiff files for the two colors. You can load the two tiff files 
in either order. If you have added files to the project, or 
moved files into the project folder and updated the project, 
all tiff files will be located in the Images folder of the project. Otherwise, you can navigate to the 
location of the files on your hard drive. Just be sure to match the colors and the files. Remember 
that red is a longer wavelength than green.  
 
Load Gene List… (Control X) 
Reads a file that associates each feature on the microarray with a gene name. MAGIC Tool 
requires you to have this file, called the gene list, in a particular format. Gene lists in MAGIC 
Tool format are available for downloading from the GCAT and MAGIC Tool web sites, and are 
included in the Sample Files, downloadable from the MAGIC Tool Website. 
 
Often, non-MAGIC Tool formatted gene lists have additional information such as which features 
did not print, alternative names for the gene, etc. You can open your gene list to see what 
information it contains. If it contains information about the plates and wells for each gene, this is 
not useful information for MAGIC but was used to help the people who printed the chips to keep 
track of what they were doing during the manufacturing of the chips. 
 
If you have a gene list that is not in MAGIC Tool format, you can use these instructions, and 
examples at http://www.bio.davidson.edu/people/macampbell/ACS_MAGIC/genelists.html to 
create a gene list with the proper format.  First, open your gene list from inside Excel. Find the 
column that contains ORF names such as YBL023c or YAR002W, etc. Copy this ORF column 
and paste it in the first column (you may have to create a new column to hold this information). 
Next, remove all header rows, so that the first row in your file is the first gene in the list. Save 
the modified file as a tab-delimited text file, with a new name that ends with the suffix “.txt”. 
This file is now a valid MAGIC Tool gene list. Although it takes a bit of manual labor to create 
this MAGIC gene list, it allows the user to quickly adapt to different microarray production 
styles. Later, you will learn how to import additional information about genes from commonly 
studied organisms.  
 
Load Saved Grid (Control W) 
This menu option allows you to load a MAGIC Tool grid file that you’ve previously saved, 
which was created through the Create/Edit Grid option below. 
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Combine and Load Grid Files 
If you create two different grid files, you can combine them using this option. When you choose 
this menu option, you’ll be prompted to pick the first grid file. From this file, MAGIC Tool will 
take the grid orientation details that you determined in step (b) above, in addition to taking all the 
grids in this file. Once you select the first grid file, you’ll then be prompted to select the second 
grid file, and then the new filename for the combined grid file. MAGIC Tool takes the grids from 
the first file as the first n grids in the new file followed by the grids from the second file as the 
remainder of the grids. You should make sure that grids are combined in the right order. Once 
the grid file has been created, MAGIC Tool will automatically load the combined grid file, and 
you can edit the grid by choosing “Create/Edit Grid,” or continue straight on to Segmentation. 
 
Create/Edit Grid (Control A) 
When you begin the addressing and gridding process, you should first see a merged image of 
your red and green tiff files, and where red and green are superimposed, you should see a shade 
of yellow. Then you will be asked four questions that tell MAGIC Tool how the spots are 
numbered, shown in the snapshot below. This step, called Addressing, is the easiest one to make 
a mistake on, so be very careful when answering the four questions as they appear in the 
window. It is vital you understand how your spots are organized on the microarray and in the 
gene list. All questions should be answered according to the way you see the merged image of 
your microarray in the viewing window. Are the genes printed in duplicate? If so, are the 
duplicate spots horizontal or vertical? You will need to know how many grids there are as well 
as the order of the spots in your gene list compared to the image in MAGIC Tool. The default 
answers to the Grid Setup questions correspond to the way you would read a book: left to right, 
top to bottom, with the second spot horizontal of the first one. It cannot be overemphasized how 
critical this step is. If you get this part wrong, you will not know the correct identity of any of the 
spots. Once you press OK, you have finished the Addressing step, but you can always choose 
File, Grid Properties in the Gridding window to get another chance to answer the four questions. 
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Gridding is much easier. The purpose of gridding is to draw little boxes around each feature so 
the spots are in the center of the boxes. You may find it helpful to zoom in on the first grid of 
spots. To zoom in, click on the “Zoom In” button and then click where you want the zoom to 
center. The number one tab should be selected as the default. 
 
Navigate the image until you can see the first grid as the one you know to be the first grid in the 
original layout of your microarray. If you want, you can adjust the contrast to help illuminate 
faint spots. To do this, slide the indicator that is currently pointing to 100% contrast near the top 
of this window. If the maximum value of the slider is still not enough contrast, you can adjust 
further by typing the percentage contrast you want in the box next to the slider. Adjusting 
contrast does NOT affect the raw data; it only allows you to see spots better for this step. 
 
To grid, you simply click on three spots. First, click on the button that says “Set Top Left Spot” 
and then click on the center of the top left spot. Second, click on the button that says “Set Top 
Right Spot” and then click on the center of the top right spot. Third, click on the button that says 
“Set Bottom Row” and then click on the center of any spot in the bottom row. Choose a good 
spot to make this step easier. Enter the information for the number of rows and columns.  Rows 
and columns are defined based on the way you are currently viewing the tiff file. To finish this 
grid, click on “Update” button. At this time, you should see all the spots in the first grid 
surrounded by boxes as shown to the right. (You may need to zoom out to see the full grid.) 
 
At this time, see if the spots look centered in the boxes. If not, then adjust the position of the 
boxes either by clicking on the appropriate button and then the correct spot, by manually typing 
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in numbers to adjust the boxes, or by adjusting the grid with the mouse. If you click anywhere 
inside the grid, you can drag the entire grid to a new location. The grid can be resized from a 
corner by clicking on one of the gray dots and dragging the mouse. As you drag, the new size 
and position of the grid will be displayed. Finally, if you click one of the rotation buttons, the 
entire grid will rotate around its center, allowing you to adjust for slightly tilted grids on your 
images. If you decide to manually tune the grid by changing the values in the boxes, note that the 
position of the mouse is displayed in the bottom left corner of the window so you can determine 
if the numbers should be bigger or smaller to shift the boxes in the correct direction. This step 
takes a bit of practice, but it is MUCH easier than most other methods for manual gridding, gives 
you more control and understanding of the process. 
 
Once the first grid is properly gridded, it is time to repeat this process for grid number two. Press 
and hold the Control (Ctrl) key on the keyboard, then click on the middle of the top left spot of 
grid #2. The same grid, translated to the location specified by your mouse click, will appear as 
grid #2, and all the numbers in the boxes on the left will be filled in automatically. If you release 
the Control key, you can adjust the grid just as you did above. Repeat this process for all grids. 
Each time you click while holding down the Control key, you will automatically place the next 
lowest number grid that has not already been defined. Continue this process until all the grids are 
surrounded with the boxes.  
 
If you need to move multiple grids at once, press and hold the Shift key, then click on each grid 
that you want to move. As the grids are selected, they will turn blue. Once all the grids you want 
to move have turned blue, click and drag inside any one of the grids to move all of the grids at 
once. You can also rotate multiple grids at once by selecting them the same way and clicking the 
one of the rotation buttons. 
 
You can save your current grid at any time, using File, Save Current Grid (or Save Current Grid 
As… to save under a different name).  Grid files are automatically given a suffix of “.grid”. You 
can close the gridding window without saving, and the current grid will automatically be restored 
the next time you open the gridding window (without asking the four questions again).  If you 
close the project, however, you must save your grid before you close the project, and choose the 
option Load Saved Grid when you begin gridding next time.  This lets you pick back up where 
you left off with gridding. 
 
When you have finished gridding all the grids on the microarray, click on the “Done!” button.  If 
you have not already saved your grid, you will be prompted to do so before moving on to the 
next step. If the number of genes in your gene list and the number of spots you gridded do not 
match, you will get an error message. You must have exactly one grid square for each line (gene 
or gene replicate) in the gene list. If not, you probably will make an error identifying the spots 
later so you are required to fix this problem now. If your gene list and the number of gridded 
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spots match, then you will be informed of the total number of spots and allowed to save the grid 
file for further use.  
 
You can take a snapshot of the combined tiff images, before, after, or during the gridding 
process. You can save an image of whatever is currently showing inside the gridding window, in 
tiff, jpg or gif format. (Tiff format works on all drawing and word processing programs so it is a 
universal format. Jpeg is good for images such as this that have many shades, like a photograph. 
Gif is the simplest format but may lose some of the subtlety of your original file.) This saved 
merged image is useful if you want to document your gridding process and can be used for 
publishing or teaching.  
 
Spot Flagging (Control F) 
This menu option is used if you want to exclude certain spots from consideration and have their 
ratios left out of the expression file. 
 
As in the gridding window, you can zoom in 
and out, and fit the image to the screen. Also 
like the gridding window, when you hover the 
mouse pointer over a spot, the status bar at the 
bottom of the window will display information 
about the gene. If you see a spot that you do not 
want included in your calculations, click on it. 
A blue “X” will appear on top of the spot 
marking it as “flagged” to be ignored by 
segmentation. 

 
If you have set automatic flagging options and 
calculated data for the spots, orange “X”s will 
appear on top of the automatically flagged 
spots. These automatic flags can only be altered 
by changing the automatic flagging options in 
the Segmentation window. 
 
To see what genes have been flagged, or to 
choose genes to be flagged or not be flagged by 
their gene name, choose “Flagging by Gene 
Name” from the Flagging menu. In the dialog 
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that appears, the unflagged genes (the genes that will be used) are on the left, and the flagged 
genes appear on the right. To flag a gene, click its entry in the list on the left, then click “Add 
>>.” To unflag a gene, click its entry in the list on the right, then click “<< Remove.” You can 
select multiple items on the list by pressing and holding the Control key, then clicking on each 
item, or, to select a range of items, click the first, press and hold the Shift key, then click the last. 
Once you press the Add or Remove button, the changes become visible on the image behind the 
Flagging by Gene Name window. Genes with names “empty,” “missing,” “none,” or “blank” are 
automatically excluded from the expression file, so they need not be flagged by name. When 
you’re finished flagging by gene name, click “DONE!” 
 
From the main Flagging window, you can also choose to save or load flag files. These files have 
the extension “.flag” and are stored in the “flags” subfolder of the project folder. The saving 
process works like the grid file, but you are not automatically prompted to save a flag file. To 
load a flag file, open the Spot Flagging window, then choose “Load Saved Flags…” from the 
File menu. From that window, you can choose the flag file to load. Note that the number of grids 
and number of spots per grid must match the current grid to be able to load a flag file. 
 
Segmentation (Control S) 
     Segmentation is the process of distinguishing signal from background. There are three 
methods available for this process. During 
segmentation, you will have the opportunity 
to view each feature on the entire microarray, 
one at a time.  In this step, the two tiff files 
are separated again, with the red image on 
top and the green image on bottom. There are 
three algorithms available in MAGIC Tool 
for finding the foreground (signal) and 
background (noise) in each channel (red and 
green) separately.  In addition, there are four 
choices for how to combine these four 
numerical values to determine the ratio.  
 
You might want to experiment with the 
different algorithms and choices before 
settling on the best method. By browsing 
from spot to spot, or jumping to potential 
problem spots you noticed while gridding, 
you can see how these choices will affect the 
final answer. When you are satisfied with 
your choices, hit the “Create Expression 
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File” button, and you will be prompted for a file in which MAGIC Tool will save all the ratios, 
one for each feature on the microarray.  When you save the whole list, all values are recomputed, 
so it does not matter if you have browsed two spots or two hundred.  In addition to saving the list 
of ratios, you will be given the opportunity to save “raw data,” i.e. all foreground and 
background values in the red and green channels. 
 
Fixed Circle 
 
Fixed circle simply places a circle in the middle of the box. All pixels 
inside the circle (that are also inside the box) will be considered signal 
and pixels outside the circle (but still inside the box) will be background. 
You can set the radius of the circle in pixel units. In the above figure, you 
can see the features are in the box, but they are not centered. The 
foreground and background values of spots that are off center and spots 
that are bigger or smaller than the selected fixed radius will not be exactly 
right. However, the ratio between the red and green values should still be 
fairly accurate. Fixed circle is the most common method for 
segmentation, and is the fastest of the three segmentation methods.  
 
Adaptive Circle 
This method changes the center and radius of the circle to fit the size and location of each 
feature.  The algorithm considers all pixels above a user-specified threshold to be “on,” and finds 
the circle with the highest percentage of pixels that are on.  The radius can range between a user-
specified lower and upper bound; the center can be anywhere inside the grid box. This method is 
slower than Fixed Circle, but generally covers the actual spot better.  
 
Seeded Region Growing 
This method for segmentation is designed to find the signal for each spot 
based on the distribution of the signal. Seeded region growing looks for 
the brightest pixel and then connects all pixels adjacent to this pixel into 
one shape. The algorithm simultaneously connects pixels to background 
and foreground regions, continuing until all pixels are in one of the 
regions. A user-specified threshold determines which pixels can be used 
to “seed” the regions. This is the slowest method since each pixel is 
processed individually.  
 
Regardless which method you choose, you can visually inspect the features to verify the gridding 
and segmentation were performed adequately. This inspection gives you a chance to flag any 
features you think should not be considered during subsequent data analysis.  
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Once you have chosen your segmentation method and ratio 
method, you can set criteria such that if any spot fails to 
meet the criteria, its ratio will not be included in the 
expression file. To do so, click on the “Automatic Flagging 
Options” button. Here, you can enter threshold values for 
the automatic flagging criteria and choose whether to flag 
a spot if any (Boolean OR) or all (Boolean AND) of the 
criteria are met for that spot. When you click OK (even if 
you leave all the thresholds blank), you will be prompted 
whether or not to do calculations to find the flagging status 
of the spots. In the process, MAGIC Tool also computes the average and standard deviation for 
each of the four data points used in calculations. You can then use this data to refine your 
automatic flagging criteria. For example, you might wish to flag genes whose total red 
foreground or total green foreground is less than two standard deviations below the mean. 

 
To see on a grid what spots have been flagged, open the Spot 
Flagging window from the Addressing/Gridding submenu. All 
spots that have been automatically flagged will be marked 
with an orange “X.” These flags can only be changed by 
adjusting the automatic flagging criteria, but you can add or 
remove manual flags at this stage as well. If a spot is both 
manually and automatically flagged, a blue “X” will be shown 
superimposed on the spot instead of the orange “X.” If you 
unflag manually flagged spot that is also automatically 

flagged, the “X” will turn orange and the spot will remain flagged.  If you adjust the automatic 
flagging options, you must recalculate the data to have the revised automatic flags appear on the 
Spot Flagging display. 
 
You can also create MA plots and RI (ratio-intensity) plots. These plots can help you visualize 
how uniform the printing and hybridization on your chip was, and can also help you determine if 
you need to perform some normalization outside of MAGIC Tool. 
Note: In this context,

! 

M = log2 R /G,   A = log2 RG . 
 
When you complete segmentation, you will 
produce an expression file. Click on “Create 
Expression File” when you are satisfied with 
the segmentation process. This will generate 
an expression file, which was the goal of the 
first half of MAGIC Tool. An expression 
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file contains the ratios for each spot (red ÷ green). A ratio of 999 means that a divide-by-zero 
would have occurred, meaning the green intensity was zero or negative; a ratio of 998 means that 
a zero-over-zero would have occurred, meaning that both red and green intensities were zero or 
less than zero. MAGIC will ignore certain entries in the gene name column (“blank”, “EMPTY”, 
“missing” and “none”; case insensitive), and will omit any flagged spots from the expression file 
entirely. This means that, in order to merge files properly, you may need to flag the same genes 
in all the expression files you wish to merge. The ratios will be used for all subsequent data 
analysis. You do not need the tiff files any more.  
     You will need to name the expression file and the column (e.g. time point, treatment, etc.). 
You can append this to an existing file or create a new one. You can also save raw signal and 
background intensity levels. 
 
 

Expression Menu 
 
Working Expression File 
 
 
 
 
 
 
This option allows you to choose from a range of 
expression files within a single project. As you can see 
from the image on the left, you can choose which one is 
active simply by clicking on it.  
 
Merge Expression Files… (Control M) 
Merging expression files allows you to combine data 
from multiple chips so you can evaluate time course 
data, or other related data sets. You merge files one at a 
time and provide nicknames to assist MAGIC in keeping 
track of the soon to be combined data. Also, you can 
select one set of gene annotations as the one that is 
retained with the merged data set. A new file will be 
created, so your two original files are not lost.  
 
Import Gene Info… (Control I) 
This allows you to compile more complete information about your ORFs. For example, we have 
created a text file that describes the chromosomal location, the three categories of gene ontology 
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annotation, and synonym for all yeast genes. This permits you to search by each of these fields to 
help detect trends and meaningful information. Average Replicates 
MAGIC Tool treats every spot as a unique feature and does not average for replicate genes 
automatically. This preserves all your original ratio data. If a set of feature names are identical in 
the gene list, MAGIC Tool will give each replicate a unique name by appending _rep1, _rep2, 
etc.  After you have created expression files, you may choose to average replicate spots as 
defined by ORF name. When you average replicates, all features with identical names 
(disregarding _rep#) then the data will be averaged.  
 
View/Edit Data (Control V) 
After an expression file is created or merged, you can view and edit the data. This option should 
not be used often, but we did want you to have access to the ratio data if you deem it necessary. 
It is helpful if you want to verify steps or pick up a project after an extended period of time. 
From this table, you can choose to highlight the top and 
bottom n ratios in each column of your expression file. To do 
so, choose “Highlight Top and Bottom Ratios” from the Edit 
menu. In the options dialog that appears, enter how many 
high/low ratio cells you want to be highlighted, choose the 
color scheme, and click OK. For example, if you enter “10” 
in the box and choose red/green as your color scheme, the ten 
highest cells in each column will be highlighted in red, and 
the ten lowest cells in each column will be highlighted in green. This feature is useful for 
checking reproducibility between experiments. 
 
View/Edit Gene Info (Control I) 
This option allows you to view and modify the gene annotations. Of course, you can view and 
edit this file outside MAGIC Tool, but this option provides you an opportunity to do so within 
MAGIC. Perhaps you will want to perform a search on the gene function. Viewing the list can 
allow you to select appropriate terms for searching.  
 
Replace Names With Aliases 
If you have imported gene info into your active expression file, it likely contains aliases, or 
common names, for the genes. You can see these aliases by choosing View/Edit Gene Info. For 
example, YBR167C’s alias is POP7. The “Replace Names With Aliases” option allows you to 
replace the gene names as defined in the gene list with their alias in the info file, creating a new 
expression file in the process. The old gene name will be the alias in the new expression file. If 
the alias appears more than once, each appearance will be appended with “_repX” where X is a 
number from 1 to the number of times that the alias occurs. If a gene does not have an alias, its 
name will not change. 
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Dissimilarities (Control D) 
Calculating dissimilarities allows you to 
compare different genes to one another. 
When you do this, a window will appear 
where you have to choose from three 
options.  The most common method is 
the default 1 – correlation (see 
Instructor’s Guide for a detailed 
explanation of this and the other 
methods). When this step is complete, 
MAGIC generates a dissimilarity file 
which you can name in the output file 
box, automatically given the extension 
“.dis”. Click on OK to begin this process. The progress is monitored in a popup scale bar (not 
shown here). Since correlation and distance calculations make no sense unless there are at least 
three columns, you will not be allowed to calculate dissimilarities if you have two or fewer 
columns. 
 
Manipulate Data 
Manipulating data is not as bad as it sounds. This option allows you to choose from five options.  
These options do NOT alter your original data, they simply allow you to process the data further 
prior to clustering or exploring your data.   
 
Transform (Control Shift T) 
     A standard process you should perform is 
transforming your data before performing any analysis 
(exploring or calculating dissimilarities and 
clustering). You want to log-transform your ratios so 
you eliminate any fractions. It is important to get all 
ratios on the same scale of magnitude. For example, if 
a gene is repressed 16 fold, the ratio will be 0.0625 
while a gene that is induced 16 fold will have a ratio of 
16.0. Before analyzing your data, you should log-transform your data. After 
transformation (typically log2), the two genes would be altered (-4 vs. +4) with 
equal magnitude but in opposite directions. See Instructor’s Guide for more 
information. You should explore after transforming, but may or many not want 
to normalize before exploring (see below). If you want to “un-transform” your 
transformed data, you can use the exponent function bx.  
 
Normalize (Control Shift N) 
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     This process takes your (transformed) ratios and corrects for the magnitude of a gene’s ratios 
and the variation among each gene’s ratios. Normalization is not appropriate for ratio data, but is 
useful for absolute expression values. See Instructor’s Guide for more details.  
 
Reorder/Delete Columns (Control Shift L) 
     If you have merged data from many microarrays (e.g. a time course experiment), you may 
want to study only certain portions of your merged data independently. Limiting data allows you 
to select column headings and retain these selected data for analysis in a “limited data set”. Your 
original merged file is left unaltered and a new file is created. The new expression file will 
terminate with the name “x_limted.exp” where x would be the original expression file name. 
 
Filter (Control Shift F) 
     Filtering allows you to remove from further consideration genes that do or do not meet user-
defined criteria. Filtering can be performed in this menu, or by saving query results as expression 
files from the Exploring window (see below).  
 
Scramble 
     Gives three different methods for creating a gene expression file with the same exact numbers 
as your current file, but in random order.  Randomization can help indicate whether the patterns 
found through exploration and clustering are real effects of the experimental conditions. 
 
Dye Swap Data Manipulation (Control Shift D) 

If you swapped the red and green images while building your expression file, you can 
swap the ratios after segmentation by choosing “Dye Swap Data Manipulation” from the 
“Expression” menu. From this window, you can choose columns of the working expression file 
to be dye swapped. If the “Data is Log Transformed” checkbox is unchecked, the ratios of the 
selected columns will be reciprocated to achieve the new values. If the “Data is Log 
Transformed” checkbox is checked, the data will be negated to achieve the new values. 
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Explore (Control E) 
After you have transformed your data, you can explore 
it in a number of ways. The default group of genes is 
the entire list in the expression file. You can select a 
subset of genes via the Form New Group button called 
“Find Genes Matching Criteria…” You can search for 
criteria similar to those shown for the filter set on the 
previous page. When you have identified genes of 
interest, the window changes as shown to the right in 
red text.  To save this new group of genes, click on the 
“View/Edit File” button just below the red text, or 
click the “Save Group File” button just below that. 
You can also save any open group as a new expression 
file with only the genes in that group by clicking the “Save Expression File” button. After you 
save a new expression file, you’ll be asked if you want to explore the new file or keep the old 
one open. If you open the new one, you can use this for progressive query building – in the 
newly created expression file, form a new group by clicking the “Find Genes Matching 
Criteria…” button and you can query the new expression file. 
 
 
A new window will appear that lets you view the list of genes in your newly formed group. You 
can modify this group if you want, or you can “save as” under the file menu. You can create 
many subgroups of genes and explore them individually using the “Select Existing Group” pull 
down menu. Once you have subsets of genes to explore, you can visualize them in a number of 
ways: 
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Plot Selected Group 
     You can have the ratios plotted graphically. You can select one gene using the pull down 
menu in the bottom right corner. Or, as shown here, you can click on one node at a time and hold 
down the shift key to select multiple genes (in this case, those with the lowest ratios in the 
group). These selected genes are listed in the top window (which you can pull down to see) as 
well as any other information about these genes in your gene list. You can adjust the size of the 
plot, as well as zoom in on a section. For example, this group of genes was selected by having a 
ratio of 2 or more at 150 minutes. To untangle the crowded lines, you can zoom in on any region 
of interest. To do this, hold down the control button then click and drag a box around the 
crowded area to zoom in.  You can unzoom using the Plot View menu at the top of the window.  
     In addition, you can label the axes, save this as a file, print this plot, normalize the data (if you 
have not already done so), change the size and shape 
of the points, and search for certain terms for the 
genes based on the gene list from which these genes 
are derived.   
 
Create Table 
This feature is unique to MAGIC Tool and creates a 
dynamic table. The default is a grayscale table, but 
you can change this to a red-green scale if you prefer.  
The most interesting feature of this interactive table is 
the scale bar and the three sliding tabs. Imagine a gene 
set that has one gene with a very high ratio (e.g. +16) 
and one gene with a very low ratio (-16) but with most 
genes having ratios between +3 and –3. Because of 
these two extreme genes, the color differences in the 
remaining genes would be lost. However, if you adjust 
the tabs, you can compress the color scale on the 
extreme ends and bring more color variation to the 

middle of the range of ratios, where most of your 
genes are located. You can use the mouse to drag the 
tabs, or enter numerical values in the boxes 
corresponding to each tab to change the colors. You 
can choose to view the gene info associated with the 
genes in the group by choosing the Show Gene Info 
option from the Edit menu; choose the option again 
to turn off gene info.  
In this view, the gene lines have been reduced from 
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16 pixels high to 3 pixels high, the color scale changed to grayscale and the range reduced to –1 
to +1. This reduction makes all high and low values either white or black, but allows the 
intermediate values to be on the grayscale.  
 
 
 
Two Column Plot 
     This plot allows you to select two columns of data and 
compare their ratios. As you can see, some comparisons are 
more similar than others.In this plot, you can select a single 
gene or many genes (hold down the shift key while 
clicking). If you mouse over a gene, the display  
will tell you the two ratios for the two time points. You can 
also see an approximation in the bottom left corner.  
 
Circular Display 
     Another unique MAGIC Tool display is the circular one. Let’s imagine you have created a 
group of genes and you want to know how correlation coefficient for these genes, and to which 
genes the correlation exists. The default setting is correlation coefficient of 0.8 which is shown 
on the left. Using the display menu, you can change the radius of the circle and the threshold for 
reporting correlations. Change the threshold to 0.1 (correlation of 0.9) and you see fewer lines 
connecting the genes (right). In this case, the same gene was clicked on (yellow) and the genes 
which met the threshold are colored green with the lines colored red.  
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Box Plot 
 
You can also create a standard “box plot,” which displays the minimum, lower quartile, median, 
upper quartile, and maximum in a graphical format. When you choose the “Box Plot” button, a 
box plot of all the selected genes from all of the columns will appear, each column of data in a 
separate column of the box plot. The 
box shows the upper and lower 
quartile and the red line the median. 
The horizontal lines at the top and 
bottom represent the next point past 
1.5 times the distance between the 
25th and 75th percentiles from the 
median.  The outlying dots are the 
positions of the outliers. 
A box plot will allow you to visualize 
experiments across columns. This is 
especially useful if you created 
biological replicates or replicate chips 
of the same experiment.
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Cluster Menu 
 
Compute… (Control C) 
Once you have created dissimilarity file, you may cluster your data. To do 
this you must computer the cluster using one of four methods. Details for 
these four methods can be found in the Instructor’s Guide.  
 
Hierarchical Clustering 
     Hierarchical clustering produces a tree-like structure (a 
dendrogram) by connecting genes according to the similarity of 
their expression data.  When a gene joins with another gene or 
group of genes in the tree, the entire collection of genes is 
represented as a single pseudo-gene.  The similarity between a 
given gene and the gene (or pseudo-gene) to which it is connected, is indicated by the horizontal 
length of the branches joining them.  At each stage in the algorithm, the two most similar genes 
or pseudo-genes are joined together.  The process continues until all genes have joined the tree. 
 
QT Clustering 
     QT Cluster takes every gene under consideration and one at a time, builds a temporary cluster 
for each gene with a user-defined cutoff value for similarity. Whichever gene garnered the most 
genes in its cluster is used to create permanent cluster and all the genes associated in this cluster 
are removed from the list of genes for the next round of creating permanent clusters. QT Cluster 
repeats the process of creating temporary clusters, one gene at a time, and then forms the second 
permanent cluster using the largest temporary cluster. This process is repeated until all the genes 
are in clusters, or the remaining genes form clusters smaller than a user-defined size. These 
remaining genes (called singletons) are not presented in the clustering displays unless the user 
defined 1 as the minimal size for a permanent cluster.  
     When you use QT Cluster, you should adjust the threshold value. The default of 0.9 means 
correlation coefficients of +0.1 through +1.0. If you change the threshold setting to 0.2, you will 
cluster genes only if their correlation coefficients are +0.8 through +1.0. The range of settings for 
threshold is from 0 (correlation of +1.0) through 1 (correlation of 0, i.e. not similar at all) to 2 
(correlation of –1.0; track opposite each other). Therefore, by setting the threshold at 2, you 
would get every single gene placed in one cluster.  
 
K-Means Clustering 
     In this method, you determine a priori how many clusters there will be (K = the number of 
clusters) and MAGIC tool will make sure all genes fit into this number of clusters. This is the 
first step in Self Organized Maps but both methods begin with the investigator determining how 
many clusters to generate. 
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Supervised Clustering 
     This method performs a QT cluster but you can define the threshold and choose one gene 
around which you want your cluster built. This allows you to focus your research on your 
favorite gene. On the left, you see that “Use Existing Gene” is selected. Click on the “Select 
Gene” button and then choose form the genes in your gene list of the currently active expression 
file.  
 
 
 
 
 
Alternatively, you can deselect the “Use Existing Gene” 
option and then click on “Create Gene”. This produces 
a window that allows you to manipulate the sliders to  
create an expression profile for which you want to find genes with similar profiles (based on the 
threshold you choose). This is a quick way to find complex patters of interest to you.  
 
Display…  
     Once you have create a cluster or two, you 
can display them. First, choose the cluster 
file you want to display. Each type of cluster 
has its own display options. 
 
Hierarchical Cluster Display 
     You have three options for display, each of 
which has its own options. Metric Tree is unique to hierarchical clustering. It produces a 
dendrogram with nodes plotted at indicated thresholds. The smaller the threshold number, the 
higher the correlation coefficient.  
     You can click on a branch point  
and highlight all the genes within  
this cluster as shown. If you mouse  
over the branch point, you can see  
the exact threshold which is 1 minus  
the correlation coefficient (~0.96).  
You can plot this cluster and as you 
would image with this high a  
correlation coefficient, the normalized data plot as a very tight group.  
     Exploding Tree is an efficient way to show clusters and gradually expand the contents of each 
node. In this example, there is one gene and then all other genes  
are within node number 2. As you click on the nodes, they expand  
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and if you click a second time, they collapse. You can explode the 
node completely by highlighting the number and clicking on the  
explode button, or explode it one at a time by clicking on the node 
directly. You can also plot any cluster within a node by clicking on 
the “Plot Node As Group” button.  
 
     Tree/Table is a way to combine the Table view and the 
dendrogram.  The dendrogram is on the far left and the colored table 
(the majority of the window) is displayed on the right (view not 
shown).  
 
QT Cluster Display 
     QT cluster also allows Exploding tree and Tree/Table, 
but it has replaced the metric tree with List. List allows you to see the name of the root gene for 
each cluster. If you click on the root gene, then all the genes within this cluster are displayed. 
You can plot this cluster as shown here.  
 
Supervised (QT) Cluster Display 
Supervised Cluster hast the same display options 
as regular QT Cluster. However, when you are 
choosing your display, you should note the  
box that indicates what threshold was used and which 
gene was used as the root. In this case, ERD2, the 
KDEL receptor exon 1 was used as the root for this 
cluster with a correlation coefficient of 0.95 (plot not shown). 
 
K-means Cluster Display 
The three displays possible for K-means cluster display 
are described above.  
 
Create Dendrogram with JTreeView 
 
When gene lists get longer than about 5000 genes, displaying clusters becomes slow in MAGIC 
Tool. One way to handle this is to export a cluster computed by MAGIC Tool for viewing in 
other software.  We export files that are readable by the open source software Java TreeView. 
Only files created using the hierarchical clustering method currently work with Java TreeView. 
When you click the Export button in the JTreeView Export Information dialog, the files required 
to visualize the cluster in JTreeView are created, JTreeView is automatically launched, the files 
are loaded, and a dendrogram displayed. You can also visualize the data in the files in a 
karyoscope which can help detect aneuploidy; to do so reopen the file in JTreeView (click File * 



 
 

42 

Open…, then choose the file you just exported and click Open), then choose “Karyoscope” from 
the Analysis menu. 
For more information about Java TreeView, visit http://jtreeview.sourceforge.net. 

 
Task Menu 

 
     As your datasets get bigger, the time it will take to make all the necessary 
calculations will increase rapidly. Therefore, MAGIC allows you to establish  

a list of tasks to be performed in sequence. You 
can tell MAGIC to begin a series of steps and 
then walk away from your computer. MAGIC 
will perform this sequence of tasks while you do 
other things. For example, you can establish a list 
of tasks to perform and go home for the night. 
When you return the next morning, MAGIC will 
have completed the series of tasks. At this time, 
the only tasks that can be performed are calculating dissimilarities and clusters.  
 
Task Manager (Control Shift M) 
The window above is the task manager. It allows you to add or remove a task, change the order 
of a task as well as various housekeeping chores.  
 
Add Task (Control T) 
This option allows you to add a task without going through the task manager.  
 
Help (Control H) 
This displays a modified version of this User’s Guide within MAGIC Tool. 

 
Credits 

 
     MAGIC Tool version 1.0 was written in JAVA by Adam Abele, Brian Akin, Danielle Choi, 
and Parul Karnik, David Moskowitz. Contributors to subsequent versions are Mackenzie Cowell, 
Gavin Taylor, Bill Hatfield, Nicholas Dovidio, and Michael Gordon. Laurie J. Heyer and A. 
Malcolm Campbell are advisors to the code-writing team. MAGIC Tool was developed at 
Davidson College and supported by the National Science Foundation, the Duke Endowment, and 
Davidson College.  
 
Parts of the code were written by Alok Saldanha (JTreeview), The MathWorks and NIST 
(JAMA matrix library) and Jari Häkkinen and Nicklas Nordborg (BASE). These sections are 
licensed under GNU Public License Version 2 or compatible licenses. 
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     We are grateful to the Open Source Physics project, particularly Wolfgang Christian and 
Mario Belloni, for sharing their knowledge and resources with us.  



Exploring Diauxic Shift Microarray Data with

In this lab, we will use the free open-source software program MAGIC Tool to explore
the yeast diauxic shift microarray data published by DeRisi et al. in Science (1997). Pat
Brown, in whose lab the data were generated, has generously provided both raw and
processed data for us to work with. The files you need to do this lab are linked to as you
go along. You will also need a copy of the DeRisi et al. 1997 reprint.

You can start this lab in two different places, depending on your interests:

Creating the Gene List
or

Creating the Project
!

References

Joseph L. DeRisi, Vishwanath R. Iyer, and Patrick O. Brown, Exploring the Metabolic and Genetic Control
of Gene Expression on a Genomic Scale. Science , Vol 278, Issue 5338, 680-686 , 24 October 1997
http://cmgm.stanford.edu/pbrown/explore/



Creating the Gene List
Understanding the Godlist

1. Using a spreadsheet program such as Excel, open the file DeRisiGodList.xls. The
file is in tab delimited text format. It is the "godlist" associated with the DeRisi
tiff files, describing where each gene is spotted on the microarray.

2. Open this jpeg snapshot of the file 1309_ch1_OD690_green.tif, the results of
scanning one of the microarrays in the Cy3 channel.

3. Study the godlist opened in step #1 and the image file opened in step #2 to help
you answer the following questions: How many spots are on each microarray?
How many grids are on each microarray? How many rows and columns are in
each grid? Answer

4. To use the godlist in MAGIC Tool, the spots must be listed systematically, first
by grid, and by rows and columns within each grid. Using the Excel sorting
function, modify the godlist so that the genes are listed in order of spot number.
Note that this results in the grids, rows and columns being ordered sequentially.

5. Once the genes have been sorted in spot order, the MAGIC Tool orientation
questions can only be answered in four ways; the other four ways are ruled out by
the way the rows and columns are numbered for the consecutive spots. List the
four ways that are feasible. Answer

6. To determine the grid order (which is grid 1, 2, 3 and 4), and whether the spots
are numbered left to right or right to left horizontally, and whether the spots are
numbered top to bottom or bottom to top vertically, we can use the godlist in
conjunction with Figure 1 of the paper. For example, find YDL204 in Figure 1,
and read its sector, row and column numbers. Use other ORF names (i.e. names
that begin with Y) in Figure 1 to determine which is grid 2, and which is grid 4.
Check your understanding of the godlist, and how it relates to the microarray
image, by looking at the following Jpeg graphic of the array orientation.

Creating the Gene List

1. The gene list for MAGIC Tool will be created from the original godlist, which
you should still have open in Excel, with the data sorted by spot number. This
systematic ordering of genes is the first criterion for a MAGIC Tool gene list.

2. A second requirement for the MAGIC Tool gene list is that the ORF names must
appear in the first column. Using Excel, modify the godlist to meet this second
criterion.

3. The final requirement for the MAGIC Tool gene list is that there must not be any
column headings. Modify the godlist to meet this third criterion.

4. Save the modified godlist, now a MAGIC Tool gene list, as a tab-delimited text
file, calling it derisi_genelist.txt.

5. Continue to Creating the Project.



Generating Expression Ratios
1. In MAGIC Tool, load the Red and Green image files for OD 6.9. Use

derisi_genelist.txt as the gene list. When you begin the addressing step, you can
either practice creating a new grid, or open the saved grid 1309.grid.

2. During segmentation, create two different expression files:
a. Using fixed circle with a radius of 3 pixels, and total signal (without

background subtraction) create a new file named my3_10, labeling the
column 10 (the number of hours that have passed between OD 0.14 and
OD 6.9). Show me how.

b. Using fixed circle with a radius of 5 pixels, and total signal (without
background subtraction) create a new file named my5_10, once again
labeling the column 10.

3. Repeat steps 1 and 2 for the OD 7.3 array, with the same settings as above. For
the OD 7.3 array, the alternative to creating your own grid for addressing is to use
1313.grid. During segmentation, append the 7.3 data to the 6.9 data in files called
my5_last2, and my3_last2. In each file, label the current column 12. Show me
how.

4. Now we will see how your data compares to the published DeRisi data.
a. Use the command Merge Expression Files to combine the two expression

files that you have just created, my5_last2.exp and my3_last2.exp, calling
the result my_last2.exp (override the default name by simply typing over
it). Accept the default nicknames for the two files, which will be appended
to the column names. The merge will take a few minutes; you will not be
able to open any menus until it is done.

b. Use the command Merge Expression Files to combine the existing
expression file derisi_last2.exp with the merged expression file you just
created, calling the result all_last2.exp. Important: you must select
derisi_last2.exp as File #1, because all genes in File #1 need to be in File
#2 for the merge to work properly.

c. Log base 2 transform the expression file.
d. From the Explore window, perform two-column plots comparing your 3

pixel segmentation to the published DeRisi data for the OD 7.3 array (12
hours into experiment), and your 5 pixel segmentation to the published
DeRisi data for that same array. Each plot will take a minute or so to
appear, so be patient.

 i. Click on an outlier point in one of the plots, turning the point red
and causing the ORF name to appear in the bottom right corner.

 ii. Go to the other plot, and select the same gene from the drop-down
menu in the bottom right corner. Is the ratio in the second plot
closer to the published data, or even more different?

 iii. Go back to Segmentation in the Build Expression File Menu,
which should still contain the OD 7.3 array. Jump to the gene you
identified in step (i), and try to explain why the ratio at this
particular spot was difficult to determine. Experiment with



different segmentation methods to see what you think the best
answer is for the ratio at this spot. Answer

 iv. As time permits, explore more outliers in the first set of plots,
and/or repeat the analysis with the OD 7.3 array.

 v. Explain why it was important to log transform the data before
looking for outliers in the two-column plots. Answer

5. Continue to Exploring Expression Ratios



Exploring Expression Ratios
1. Use the command Merge Expression Files to combine the existing expression file

derisi_first5.exp and the existing expression file derisi_last2.exp. Be sure to list
the files in this order, and change the nicknames for both files to t. Call the
merged file derisi.exp. After the merge is complete, examine derisi.exp using
View / Edit Data, to be sure the column labels are in order.

2. Add the gene information in yeastgenes.info to derisi.exp, forming derisi_i.exp.
Use this merged and annotated file, which is the complete time course published
by DeRisi, to answer the remaining questions.

3. How many genes' expression change by at least a factor of 2 in the first two
hours? (p. 680) Answer

4. How many genes' expression are greater than 2.0 or less than 0.5 in the time 0
microarray? How does this affect your interpretation of the answer to #3? Answer

5. How many genes' expression increases by a factor of at least 4 sometime during
the time course? How many genes' expression diminishes by a factor of at least 4
sometime during the time course? (p. 680) Answer

6. Investigate the change in expression of ribosomal genes by forming a group of
ribosomal genes, plotting the group, and highlighting the mitochrondrial genes in
the plot. (p. 681) Answer

7. Find genes with the "late induction profile" described on p. 681, and graphed in
Fig. 5B, in which levels increased by more than ninefold at the last timepoint, but
less than threefold at the preceding timepoint. Compare your results to those in
Fig. 5B, and use http://www.yeastgenome.org to help explain any discrepencies.
Answer

8. Add the file derisi_lab_ i_tlog2.dis to the project to enable you to answer the
remaining questions. This file was generated by transforming the ratios with log
base 2 , then computing dissimilarities   using 1-correlation. The process of
computing dissimilarities takes a few hours, even on a fast computer, so we are
skipping this step for this lab. If you do not have the file, you can download it by
right-clicking here. WARNING, this file is HUGE (72 MB)!

9. Form a supervised cluster with SAM1 (YLR180W) as the seed, and compare your
results to Fig 5E,

a. using 0.2 as the threshold. Answer
b. using 0.02 as the threshold. Answer

10. If you did not know what patterns to expect or search for, you might want to
cluster the genes in to groups with similar patterns first. Use the (unsupervised)
QT clust method with a threshold of 0.3 and maximum number of clusters 20.
Answer

This concludes the online lab, "Exploring Diauxic Shift Microarray Data
with MAGIC Tool."



Exploring Correlation 
 
The accompanying Excel spreadsheet (correl_explore_scenarios.xls) illustrates the 
concept of the Pearson correlation coefficient as a measurement of similarity between 
gene expression patterns.  Each of the four scenarios in the spreadsheet begins with log-
transformed gene expression ratios of two genes, as measured in eight different samples.  
We will refer to the set of eight numbers for a particular gene as a “gene expression 
pattern,” or simply “pattern.”  The correlation coefficient between the two gene 
expression patterns is calculated by Excel and displayed in the grey-shaded area to the 
right of the pattern data. 
 
The first graph for each scenario (on the left hand side) plots the gene expression pattern 
for each of the two genes.  One way to think about the correlation coefficient is as a 
measure of how well the two patterns “track” each other.   
 
If the two patterns tend to go up and down together, from one sample to the next, then the 
patterns are highly positively correlated.  The patterns in Scenario II have a fairly large 
positive correlation.  The largest possible value for correlation is 1, and this occurs when 
the change from one sample to the next for one gene, divided by the change from one 
sample to the next for the other gene, is always the same number.  In other words, the two 
gene expression patterns do not have to have to be the same order of magnitude to be 
highly correlated.  For example, one gene may have values between –1 and 1, while the 
other gene has values between –100 and 100. 
 
If the two patterns tend to be opposites of one another, i.e. one goes up while the other 
goes down, as you move from one sample to another, then the patterns are highly 
negatively correlated.  The smallest possible value for correlation is –1.  
 
The second graph for each scenario (on the right hand side) plots the log-transformed 
gene expression ratio for each sample as a point in the plane.  The horizontal axis 
represents Gene 1, and the vertical axis represents Gene 2.  The line of best fit (i.e. 
regression line) is shown on each graph of this type.  If the line of best fit has a negative 
slope, the two patterns are negatively correlated; if the line has a positive slope, the two 
patterns are positively correlated.  Note that the slope of the line does not measure the 
magnitude of the correlation.  Rather, the magnitude of the correlation is determined by 
how close the points are to the line of best fit.  If they are very close, the magnitude is 
large (near 1 or –1).  If they are scattered far from the line, the magnitude is near 0.  The 
patterns in Scenario I have a correlation near 0. 
 



The following exercises guide you though a brief exploration of the correlation 
coefficient.  Answers are on the last page of this document. 
 

1. In Scenario I, a single number can be changed for Gene 1 that results in dramatic 
changes in the correlation. Use the two graphs for the scenario to guide your 
experimentation of the following changes. 

a. Change a single sample for Gene 1 that causes the correlation to jump up 
to approximately 0.68.   

b. Change Scenario I, Gene 1, Sample 8, from 100 to –150.  Note that the 
correlation jumps down to approximately –0.63. Try to explain this jump 
by seeing what changes in each of the two graphs. 

2. To help answer the following, first notice that in Scenario II, the pattern for Gene 
2 is evenly spaced between 10 and 80, changing in increments of 10.  

a. Change the pattern for Gene 1 in Scenario II such that the correlation is 
exactly 1.  You will need to change all but one or two of the values. 

b. Change the pattern for Gene 1 in Scenario II such that the correlation is 
exactly –1. You will need to change all but one or two of the values. 

3. Scenario III illustrates how sensitive the correlation can be to small changes.  
Here we examine a gene whose log ratio changes substantially across samples and 
a gene with essentially constant log ratio across samples.   

a. Find a pair of samples for which Gene 2 can be changed from 7 to 6, 
resulting in a much larger positive correlation. 

b. Return the two samples found in part (a) to their original values of 7, and 
find a new pair of samples for which Gene 2 can be changed from 7 to 6, 
resulting in a fairly large negative correlation. 

4. Scenario IV shows that correlation is undefined if one of the patterns is constant 
across samples.  As in the previous scenario, changing just one of the values for 
Gene 2 has a significant effect on the correlation. 

a. Change the value for sample 1 from 4 to 3, and note the effect on 
correlation. 

b. Change the value for sample 8 from 4 to 3, and note the effect on 
correlation. 

c. Explain why one of these changes has a greater magnitude effect than the 
other. 

d. Which single change from 4 to 3 would give the correlation nearest to 0?  
Why?   

 
 



correl_explore_scenarios.xls

SCENARIO I
Sample Gene 1 Gene 2

1 -100 1
2 -50 10
3 10 100
4 100 -100
5 50 -10
6 -10 1
7 0 -50 Correlation
8 100 100 -0.0229278

SCENARIO II
Sample Gene 1 Gene 2

1 -100 10
2 -50 20
3 10 30
4 100 40
5 50 50
6 -10 60
7 0 70 Correlation
8 100 80 0.64483142
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correl_explore_scenarios.xls

SCENARIO III
Sample Gene 1 Gene 2

1 -100 6
2 -50 7
3 10 6
4 100 7
5 50 6
6 -10 7
7 0 6 Correlation
8 100 7 0.3453883

SCENARIO IV
Sample Gene 1 Gene 2

1 -100 4
2 -50 4
3 10 4
4 100 4
5 50 4
6 -10 4
7 0 4 Correlation
8 120 4 #DIV/0!
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Exploring Correlation 
 
The accompanying Excel spreadsheet (correl_explore_scenarios.xls) illustrates the 
concept of the Pearson correlation coefficient as a measurement of similarity between 
gene expression patterns.  Each of the four scenarios in the spreadsheet begins with log-
transformed gene expression ratios of two genes, as measured in eight different samples.  
We will refer to the set of eight numbers for a particular gene as a “gene expression 
pattern,” or simply “pattern.”  The correlation coefficient between the two gene 
expression patterns is calculated by Excel and displayed in the grey-shaded area to the 
right of the pattern data. 
 
The first graph for each scenario (on the left hand side) plots the gene expression pattern 
for each of the two genes.  One way to think about the correlation coefficient is as a 
measure of how well the two patterns “track” each other.   
 
If the two patterns tend to go up and down together, from one sample to the next, then the 
patterns are highly positively correlated.  The patterns in Scenario II have a fairly large 
positive correlation.  The largest possible value for correlation is 1, and this occurs when 
the change from one sample to the next for one gene, divided by the change from one 
sample to the next for the other gene, is always the same number.  In other words, the two 
gene expression patterns do not have to have to be the same order of magnitude to be 
highly correlated.  For example, one gene may have values between –1 and 1, while the 
other gene has values between –100 and 100. 
 
If the two patterns tend to be opposites of one another, i.e. one goes up while the other 
goes down, as you move from one sample to another, then the patterns are highly 
negatively correlated.  The smallest possible value for correlation is –1.  
 
The second graph for each scenario (on the right hand side) plots the log-transformed 
gene expression ratio for each sample as a point in the plane.  The horizontal axis 
represents Gene 1, and the vertical axis represents Gene 2.  The line of best fit (i.e. 
regression line) is shown on each graph of this type.  If the line of best fit has a negative 
slope, the two patterns are negatively correlated; if the line has a positive slope, the two 
patterns are positively correlated.  Note that the slope of the line does not measure the 
magnitude of the correlation.  Rather, the magnitude of the correlation is determined by 
how close the points are to the line of best fit.  If they are very close, the magnitude is 
large (near 1 or –1).  If they are scattered far from the line, the magnitude is near 0.  The 
patterns in Scenario I have a correlation near 0. 
 



The following exercises guide you though a brief exploration of the correlation 
coefficient.  Answers are on the last page of this document. 
 

1. In Scenario I, a single number can be changed for Gene 1 that results in dramatic 
changes in the correlation. Use the two graphs for the scenario to guide your 
experimentation of the following changes. 

a. Change a single sample for Gene 1 that causes the correlation to jump up 
to approximately 0.68.   

b. Change Scenario I, Gene 1, Sample 8, from 100 to –150.  Note that the 
correlation jumps down to approximately –0.63. Try to explain this jump 
by seeing what changes in each of the two graphs. 

2. To help answer the following, first notice that in Scenario II, the pattern for Gene 
2 is evenly spaced between 10 and 80, changing in increments of 10.  

a. Change the pattern for Gene 1 in Scenario II such that the correlation is 
exactly 1.  You will need to change all but one or two of the values. 

b. Change the pattern for Gene 1 in Scenario II such that the correlation is 
exactly –1. You will need to change all but one or two of the values. 

3. Scenario III illustrates how sensitive the correlation can be to small changes.  
Here we examine a gene whose log ratio changes substantially across samples and 
a gene with essentially constant log ratio across samples.   

a. Find a pair of samples for which Gene 2 can be changed from 7 to 6, 
resulting in a much larger positive correlation. 

b. Return the two samples found in part (a) to their original values of 7, and 
find a new pair of samples for which Gene 2 can be changed from 7 to 6, 
resulting in a fairly large negative correlation. 

4. Scenario IV shows that correlation is undefined if one of the patterns is constant 
across samples.  As in the previous scenario, changing just one of the values for 
Gene 2 has a significant effect on the correlation. 

a. Change the value for sample 1 from 4 to 3, and note the effect on 
correlation. 

b. Change the value for sample 8 from 4 to 3, and note the effect on 
correlation. 

c. Explain why one of these changes has a greater magnitude effect than the 
other. 

d. Which single change from 4 to 3 would give the correlation nearest to 0?  
Why?   

 
 



 
1. Possible answers: 

a. Change Scenario I, Gene 1, Sample 4, from 100 to –150.  The correlation 
jumps up to approximately 0.68.  

b. Change Scenario I, Gene 1, Sample 8, from 100 to –150.  The correlation 
jumps down to approximately –0.63. 

2.  
a. Change the pattern for Gene 1 to be evenly spaced and increasing, for 

example, increasing from –100 to 110 in increments of 30. You can watch 
the correlation steadily approach 1 as you change the numbers for samples 
1 through 8. 

b. Change the pattern for Gene 1 to be evenly spaced and decreasing, for 
example, decreasing from 110 to –100 in increments of 30. 

3.  
a. By changing only samples 2 and 6 for Gene 2 from 7 to 6, the correlation 

jumps to nearly 0.78.   
b. By changing only samples 4 and 8 for Gene 2 from 7 to 6, the correlation 

falls to approximately –0.38. 
4.    

a. Changing sample 1 causes correlation to jump to 0.632. 
b. Changing sample 8 causes correlation to jump to –0.577. 
c. The first change has greater magnitude impact on the correlation because 

Sample 4, with Gene 1 value of 100, keeps the line from dropping too far 
on the right when Sample 8 is changed.  The line tries to be close to all 
sample points.  The closest point to Sample 1 on the left end is Sample 2, 
but it is further from Sample 1 than Sample 4 is from Sample 8, so the 
“pull” on the line when Sample 8 is changed is not as great.  

d. Changing Sample 3, Gene 2, from 4 to 3 gives a correlation of 0.027.  No 
other single change from 4 to 3 results in a correlation this close to 0.  The 
reason this correlation is so near 0 is that this Gene 1 value (10) is closest 
to the average, so changing its Gene 2 value has little effect on the line of 
best fit. 

 



Clustering Self-Quiz Sampler      Heyer & Campbell 
 

Page 1 of 3 
 

Self-Quiz Sampler for Students 
 
Do your students truly understand how clustering is peformed? 
Can your students efficiently read color displays of microarray data? 
 
 
Multiple Choice 
1) If you change the correlation threshold for “cutting the tree” in hierarchical clustering from 0.8 to 
0.5, you can be certain that the number of genes per cluster will: 
 
a) decrease 
b) increase 
c) stay the same 
d) not decrease 
e) not increase 
f) not stay the same 
 
 
2) If you change the correlation threshold for “cutting the tree” in hierarchical clustering from 0.95 to 
0.2, the number of clusters is likely to: 
 
a) decrease 
b) increase 
c) stay the same 
d) you cannot tell without seeing the data 
 
 
3) Which gene pair is likely to cluster together if the correlation threshold for “cutting the tree” in 
hierarchical clustering is set for 0.90? 
 
A.        C. 
 
 
 
 
 
 
B.        D. 
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True-False 
 
1) Genes with similar function (e.g. cell cycle regulation) will likely have a correlation coefficient 
greater than 0.5. 
2) Any two genes can be forced to be in the same cluster by decreasing the correlation threshold.  
3) Two genes that cluster together under one set of experimental conditions will still cluster together 
under another set of experimental conditions at the same correlation threshold. 
 
 
 
Open-ended Questions for Exploration 
 
Using the Online Clustering Web Page, see if you can choose appropriate genes, conditions and 
correlation threshold to discover the following: 
 
1) Six genes such that 3 are in one cluster and 3 are in a second cluster.  
2) Six genes that fall into 6 different clusters, with a correlation threshold no greater than 0.7. 
3) Under condition Heat Shock 1 (include all), genes YNL174W, YOL077C and YOR095C in  
 a) one cluster 
 b) two clusters 
 c) three clusters 
4) Five genes that cluster with YNL174W using a correlation threshold of 0.75.  
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Answer Key 

 
 
Multiple Choice 
 
1) d 
2) a 
3) b 
 
True-False 
1) False 
2) True 
3) False 
 
Open-ended Questions for Exploration 
 
1) There are many correct answers. One example: YNL007C, YOL151W, YNL134C are in one cluster 
and YOR361C, YPR190C, YOR095C are in another when using Heat Shock 1 and correlation 
threshold < 0.8. 
2) There are many correct answers. One example: YAL015C, YHR104W, YKR024C, YEL055C, 
YKR066C, and YHL028W using Hydrogen Peroxide. 
3) 0.9, 0.95, 0.99 
4) YOR361C - YOR095C - YLR175W - YPR190C - YOL077C 
 



Multiple-laboratory comparison of microarray platforms
Rafael A Irizarry1, Daniel Warren2, Forrest Spencer3, Irene F Kim4, Shyam Biswal5, Bryan C Frank6,
Edward Gabrielson7, Joe G N Garcia8, Joel Geoghegan9, Gregory Germino4, Constance Griffin10,
Sara C Hilmer11, Eric Hoffman11, Anne E Jedlicka12, Ernest Kawasaki9, Francisco Martı́nez-Murillo13,
Laura Morsberger10, Hannah Lee5, David Petersen9, John Quackenbush6,14, Alan Scott12, Michael Wilson15,17,
Yanqin Yang2, Shui Qing Ye8 & Wayne Yu16

Microarray technology is a powerful tool for measuring RNA

expression for thousands of genes at once. Various studies have

been published comparing competing platforms with mixed

results: some find agreement, others do not. As the number of

researchers starting to use microarrays and the number of cross-

platform meta-analysis studies rapidly increases, appropriate

platform assessments become more important. Here we

present results from a comparison study that offers important

improvements over those previously described in the literature.

In particular, we noticed that none of the previously published

papers consider differences between labs. For this study, a

consortium of ten laboratories from the Washington, DC–

Baltimore, USA, area was formed to compare data obtained from

three widely used platforms using identical RNA samples. We

used appropriate statistical analysis to demonstrate that there

are relatively large differences in data obtained in labs using the

same platform, but that the results from the best-performing

labs agree rather well.

Microarray technology has become an important tool in
medical science and basic biology research. A first time user will
find many platform options and little guidance on which is the
most appropriate for their application. Various comparison
studies have been published presenting contradictory results.
Some have observed agreement in results obtained with different
platforms1–6, others have not7–10. Here we demonstrate that the
disagreement observed in some studies may be due to disputable
statistical analyses. In particular, none of the prior studies
have considered lab-to-lab variability (lab effect). The lab effect

has been observed in all scientific fields11. Therefore, it is
essential to assess this effect before drawing conclusions about
platform performances.

A consortium of ten labs from the Washington, DC–Baltimore,
USA, area was formed to compare the performance of three leading
platforms. Researchers in each lab were given identical RNA
samples that were processed according to what was considered
best practice in each lab. Affymetrix GeneChips were used in five of
the labs (Affymetrix labs 1–5), two-color spotted cDNA arrays were
used in three labs (two-color cDNA labs 1–3), and two-color long
oligonucleotide arrays were used in two labs (two-color oligo labs
1 and 2). Here we describe the features of our experiment that are
necessary for such studies to be informative and a set of simple
assessment measures useful for summarizing and interpreting the
observed data.

To decide among various strategies for measuring the same
quantity, one looks to optimize accuracy and precision. Because
in many situations precision can be improved at the cost of
accuracy, and vice versa, one tries to find the strategy providing
the ‘best’ balance. Because the definition of best depends on the
application, it is important to consider precision and accuracy in the
context of a realistic problem. We mimicked the most common
application of microarray technology: screening for a few candidate
genes that appear to be differentially expressed among thousands of
genes that are not. In this context, an appropriate comparison
experiment requires at least the following three features. (i) To
appropriately assess precision we should make a comparison with
an a priori expectation of no-fold change for most or all genes. (ii)
To appropriately assess accuracy, an a priori expectation of nonzero
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log–fold change of a few genes is needed. (iii) To be able to
distinguish between platform effect and lab effect, at least two labs
should provide data from each platform. We have designed the first
platform comparison experiment that includes all of these features.

In general, the Affymetrix labs achieved better accuracy and
precision. But overall, the best-performing lab was two-color oligo
lab 2. Furthermore, two-color cDNA labs 1 and 3 outperformed
most Affymetrix oligo labs in some categories. The worst perfor-
mance was observed from a two-color oligo lab; thus the best and
worst overall performance was achieved using the same platform.
This underscores the importance of considering the lab effect. In
general, we found that the lab had a larger effect on, for example,
precision than did the platform, and that the results from the best-
performing labs agreed rather well.

RESULTS
Assessment measures and plots
We created two samples in which we expect a few genes to be
differentially expressed. To do this we developed a strategy based
on mixtures from four knockout human cell lines that resulted in
four specific genes with a priori expectation of fold change different

from 1 (Supplementary Methods online). We refer to these
genes as the altered genes. For each of these two samples we created
an exact copy, or technical replicate, for a total of four samples.
Exact copies of these four samples where hybridized by the ten
labs using their platform of choice, and the resulting data were
processed as described. We quantified relative expression between
the two duplicate pairs of samples with log2-fold change. This
resulted in two replicate log2-fold change measurements for each
gene, from each lab.

To summarize precision we used two simple measures: correla-
tion across replicate log2-fold change measurements and standard
deviation (s.d.) of the difference between replicate log2-fold change
measurements. These assessment measures can also be used to
quantify the similarity between measurements made using dif-
ferent platforms. We refer to these two assessment measures as
correlation and s.d. (Table 1, columns 3 and 4). A box plot of the
differences used to compute the s.d. for each lab provides a
graphical summary (Fig. 1a).

To assess accuracy we validated 16 genes using RT-PCR
(Supplementary Methods). The 16 genes included the four
altered genes, four randomly selected genes from those that were

Table 1 | Assessment measures for all ten labs

Precision Proportion of agreement

Platform Lab number Correlation s.d. Accuracy signal (s.e.m.) 25 50 100

Affymetrix oligo 1 0.48 0.32 0.62 (0.05) 0.72 0.56 0.54

Affymetrix oligo 2 0.76 0.17 0.64 (0.05) 0.80 0.70 0.70

Affymetrix oligo 3 0.67 0.24 0.66 (0.05) 0.68 0.66 0.60

Affymetrix oligo 4 0.79 0.15 0.59 (0.04) 0.80 0.70 0.65

Affymetrix oligo 5 0.59 0.25 0.58 (0.05) 0.64 0.68 0.55

Two-color cDNA 1 0.65 0.23 0.41 (0.12) 0.68 0.64 0.65

Two-color cDNA 2 0.68 0.21 0.13 (0.04) 0.28 0.30 0.38

Two-color cDNA 3 0.46 0.23 0.54 (0.09) 0.72 0.68 0.50

Two-color oligo 1 0.68 0.51 0.21 (0.09) 0.40 0.36 0.33

Two-color oligo 2 0.90 0.10 0.76 (0.13) 0.44 0.72 0.81

To summarize precision we used the correlation across replicate log2-fold change measurements and standard deviation (s.d.) of the difference between replicate log2-fold change measurements.
To quantify accuracy we regressed the observed log2-fold changes of 16 genes against nominal log2-fold changes obtained using RT-PCR. The slope of the regression line defines what we refer
to as accuracy signal. The proportion of agreement in interesting genes lists—ranked by fold change—of sizes 25, 50 and 100, created with replicate log2-fold change measurements, are also
used to assess precision.

__
_
__

_

__

__
_
_
_

_

_
_

__

_
__
___

_

___

_

_

_
_

_

_

_
_

_

_

___
_____

_

__

__

_

_

_

_

_

__
_
_
_
_______

___

____

_

__
_

_

__

_

_

_
_
__
___

_

__

_
_

_

_

_

_
_
_
_____

_

___

_

______

_

_
____

__

____

_

__

__

_

_
_
_

_

_
_

__

_

_

__

__

_

_

_______

_

_
__

_

_

___

_

_

_

_

_

_

_

_
_

_
__

____

_

_

__
_

____

__
_

_

_

_

_
_

_

_
_
____

_

_

_

_

_

_

_

__
_
___

____

_

_

_

__

_

__

__

_

_

__

__

_____

_

_

__

_

__

_

_

_

____

___

_

__

_

_

___

_

_

__

_

_
__
_

___
_

_

_

___

_

_

__

_

_

_

_

_
_

__

_

_

_
_

_

_

_

_

____

__

_

_

___

___

_
__

_

__

__

_

_

__

__

______

____

_

_

_

_

__

__

__

__

_

_

_

_

__
__

_

_
__

_

_

_

_

_

_

_
__

__
__
_

__

_
_
_

_

_

__

_

__

_

__

_

_

_

_

_

_
_
__
____

_

_

_

_

_

__
_

_

__

____
_

_

_
_
_

_

_

_

_

_

__

_

__

_______

_

_
__

_

_

_
_

_

_

_

_

_

_

_

__

_____

_

__

_

__

_
_

_

_
__

_

_
_

___

____

_

_

__
__

_

__

_

_

_
_

_
_

_

_

_

__

_

_

__

_

__

_

_

_

_

_

_

_

__

_

_

_

__

Lab number

D
iff

er
en

ce
 b

et
w

ee
n 

re
pl

ic
at

es

1 2 3 1 2 1 234 5

–1

0

1

2

3

4

–2

–1

0

1

2

3

4

–2

–1 0 1 2 3 4–2

Affymetrix oligo

Two-color oligo
Two-color cDNA

 RT-PCR log2-fold change

O
bs

er
ve

d 
lo

g 2-
fo

ld
 c

ha
ng

e

11
1

1

11
1

1

1

1

1
1

11

1

1
22 2

2
22

2

2

2

2

2

2

2
2

2233 3

3

3
3

3
3

3

3

3

3

33

33
44 4

4

44
4

4

4

4

44

4
4 4

455 5

5
55 5

5

5

5

55

55 5
5

11
1

1

1

1
1 1

1

1

1
1

11

1

122
2

222 2 2

2

2

22

2

2 2
2

3

3
3

333
3 3

3

3

3

3

33 33

1

1

1
11

1

1

1

1

1

1

1 1
1

1
1

2

2
2

2

2
2

2

2

2

2

22

22

2

2

a b Figure 1 | Precision and accuracy assessment

figures. (a) Box plot of the difference in log2-fold

change between replicate measurements of gene

expression from each of the ten labs. The platform

used is represented by different colors defined in

the figure. (b) Observed log2-fold change versus

nominal (calculated from RT-PCR experiments)

log2-fold change for the four altered genes and

12 other genes. The results for each of the 10 labs

are represented by the lab number and color for

the different platforms as in a. The solid diagonal

line is the identity function and represents

perfect accuracy.
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consistently found not to be differentially expressed across all
platforms, four genes that were consistently found to be differen-
tially expressed across all platforms, and four genes found to be
differentially expressed using one platform and not the others. To
quantify accuracy we regressed the observed log2-fold changes of
these 16 genes against nominal log2-fold changes obtained by
RT-PCR analysis. The slope of the regression line defines our
assessment measure, which we refer to as the signal (Table 1,
column 5). A graphical summary is the scatter plot of the observed
versus nominal values obtained by all labs (Fig. 1b and Supple-
mentary Fig. 1 online).

A scatter plot of the log2-fold changes obtained by the best-
performing Affymetrix oligo and two-color cDNA labs showed no
correlation for about 95% of genes (Fig. 2a). These genes had log2-
fold changes close to zero and were probably not differentially
expressed. Because for these genes it is likely that we measured zero
log2-fold change plus random measurement error, we did not
expect across-platform measurements to correlate. But for the
few genes that appeared to be differentially expressed there was
good agreement. In practice, we typically screen a small subset of
genes that appear to be differentially expressed. Therefore, it is
more important to assess agreement for genes that are likely to pass
this screen. To account for this, we introduced a new descriptive
plot: the correspondence at the top (CAT) plot. This plot is useful
for comparing two procedures for detecting differentially expressed
genes. To create a CAT plot we made a list of n candidate genes for
each of the two procedures and plotted the proportion of genes in
common against the list size n (Fig. 2b). As assessment measures,
we reported the value of these curves for list sizes 25, 50 and 100.
We refer to these assessment measures as the proportion of
agreement (Table 1, columns 6, 7 and 8).

Preprocessing
We found that within- and across-platform
performance can be greatly improved using
alternative preprocessing algorithms to the
defaults offered by the array manufacturers.
For our analysis, probe-level data from the
Affymetrix oligo arrays were preprocessed
with the robust multiarray analysis
(RMA)12. Print-tip normalization with no
background correction was used to prepro-
cess probe-level data from the two-color
platforms13. Spot-quality information was
ignored because we found it did not have
substantial impact on downstream results.
Because algorithms implementing these
methodologies are available from the Bio-
conductor project14, we will refer to them as
the Bioconductor procedures. We com-
pared the results obtained with this
approach to those obtained with what we
consider to be the default approaches: Affy-
metrix’s MAS 5.0 algorithms for Affymetrix
oligo arrays and median adjustment nor-
malization with background correction for
the two-color technologies. Although in
general the default procedures had slightly
better accuracy (not statistically signifi-
cant), the gains in precision given by the

Bioconductor procedures were dramatic. Because of the great
improvement provided by the Bioconductor procedures (Supple-
mentary Fig. 2 online and Supplementary Table 1 online), we use
them for all of the experiments presented in this paper.

Annotation
To match features across platforms, we used mappings that match
features to genomic entities that are available from various public
databases. Resourcerer15 provides mappings that link features to
UniGene, LocusLink and RefSeq for all the platforms used in our
experiment. Resourcerer also provides its own annotation in a
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Figure 2 | Plots demonstrating agreement for differentially expressed genes. (a) Scatter plot of observed

log2-fold change from two-color cDNA lab 1 and Affymetrix oligo lab 4. Points inside red circle represent

genes that do not appear to be differentially expressed. Blue points are genes that appear to be

differentially expressed. The solid diagonal line is the identity function and represents perfect accuracy.

(b) CAT plot showing agreement between differential expression calls, defined by ranking genes by fold

change, using replicate measurements from each lab. We considered list sizes less than 100 because we do

not expect more than 100 genes to be differentially expressed, thus correspondence of larger lists is not

of interest. The three colors represent the different platforms as in Figure 1a. The different line types

represent the different labs within each platform so that a color and line-type pair uniquely represents

each lab. The yellow strip represents critical values for rejecting the null hypothesis of no agreement

at the 0.001 level.

UniGene LocusLink

RefSeq 9,288

876

109

21

109

6

7,021

4,853

Figure 3 | Venn diagram illustrating agreement between annotation

databases. For each mapping (UniGene, LocusLink and RefSeq) we obtained

a different set of genes that had identifiers for each platform. This Venn

diagram shows the agreement between these three different lists.
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eukaryotic gene orthologs (EGO) database. Unfortunately, none of
these mappings are one to one: not all the features in the arrays are
annotated and/or some are annotated with more than one genomic
identifier. Therefore, for a particular annotation only a subset of the
array features will have an entry for each platform. Furthermore,
these subsets differ depending on which annotation was used
(Fig. 3). The annotation used had an effect on the across-platform
agreement. For example, the correlation between measurements
from Affymetrix oligo lab 4 and two-color cDNA lab 1 was 0.39–
0.44 when using UniGene and EGO, respectively. We found that
using the genes having entries in all databases for all platforms
provided the best agreement. For all the analyses presented here
we used the subset of genes obtained from this intersection
(Supplementary Table 2 online).

Platform comparison
Our results demonstrated that precision is comparable across
platforms (Table 1 and Fig. 1a). With the exception of two-color
oligo lab 1, all the labs performed similarly, and it is clear that the
lab effect is stronger than the platform effect. All the labs provided
attenuated log2-fold change estimates, and this is consistent with
previous observations12 (Fig. 1b). In general, the labs using the
Affymetrix platform seem to attain better accuracy than the
labs using two-color platforms, although the best signal
measure was attained by two-color oligo lab 2. Two-color cDNA

lab 2 and two-color oligo lab 1 were clearly underperforming. The
differences in data obtained by the other eight labs were not
statistically significant.

We used CAT plots to assess across-platform agreement. It is
important to note that these were used to compare results from
single array experiments, and thus we did not expect perfect
agreement. Note, for example, that the agreement of lists of the
top 100 genes created from replicate fold-change measurements
ranged from 33–81 percent (Fig. 1b). CAT plots comparing across-
lab agreement demonstrate that the Affymetrix oligo labs consis-
tently provided results similar to those from the best-performing
labs (Fig. 4). This suggests that the Affymetrix platform provides by
far the most consistent data across labs. Apart from two labs, there
appears to be good agreement regardless of the platform used
(Fig. 4 and Supplementary Table 3 online).

DISCUSSION
We defined a series of assessment measures and plots used to
compare three leading microarray platforms. These were justified
by questions of scientific interest and have practical inter-
pretations. The signal measure represents the expected log2-fold
change in expression of a gene that should be differentially
expressed with a nominal fold change of two, and the s.d.
measure gives us the expected log2-fold change of a null gene.
These two measures gave us a clear idea of the signal-to-noise ratio.
Although, overall, the Affymetrix platform performed best, it is
important to keep in mind that this platform is typically more
expensive than the alternatives.

We also demonstrated that there was relatively good agreement
between the Affymetrix labs and the best-performing two-color
labs. These results contradict some previously published results that
find disagreement across platforms7–10. The conclusions reached by
these studies are likely due to three misconceptions. The first
misconception is that absolute measurements of gene expression
can be used to assess data across platforms. Note that both studies
using absolute measurements had found disagreement7,10. Results
established based on absolute measurements are misleading
because they are adversely affected by platform-dependent probe
effects that can be removed by considering relative measurements
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Figure 4 | CAT plots showing agreement in differential expression calls, based on fold change, between each lab and a reference lab. (a–c) The different line

types represent the individual labs, and the three colors represent the different platforms as in Figure 2b. The black curve is the CAT curve comparing replicates

from the reference lab. (a) CAT plot using data from the best-performing Affymetrix oligo lab as the reference. (b) CAT plot using data from the best-performing

two-color cDNA lab as the reference. (c) CAT plot using data from the best-performing two-color oligo lab as a reference.

Table 2 | Correlation and s.d. measurements computed for absolute and
relative measurements of expression

Correlation s.d.

Absolute Relative Absolute Relative

Affymetrix oligo versus
Affymetrix oligo

0.98 0.79 0.16 0.15

Two-color cDNA versus
two-color cDNA

0.91 0.65 0.29 0.23

Affymetrix oligo versus
two-color cDNA

0.40 0.44 0.91 0.25

Affymetrix oligo lab 4 and two-color cDNA lab 1 were used for this comparison.
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of expression. The statistical model used to motivate our assess-
ment measures, described in the Methods section, can be used to
demonstrate this point. Note that in all studies interested in
differential expression of genes, relative expression is the quantity
of interest; thus this type of measurement is always available. The
second misconception is that preprocessing has no significant effect
on final results. With one exception4, all previous studies had used
algorithms that have been shown to be inferior to alternatives
developed by the academic community12,13. Finally, the third
misconception is that platform performance is not affected by
lab. The existence of the sizable lab effect was ignored in all
previously published comparison studies. This permits the possi-
bility that studies done by, for example, experienced technicians
may find agreement and studies done by less-experienced techni-
cians may find disagreement (Supplementary Fig. 3 online).

Although we found relatively good across-platform agreement, it
is quite far from being perfect. In all across-platform comparisons,
there was a small group of genes that had relatively large fold
changes from data obtained using one platform but not using the
others (Fig. 2b). We conjecture that some genes were not measured
correctly, not because the technologies are not performing ade-
quately, but because transcript information and annotation can still
be improved.

Our results provide a useful assessment of three leading tech-
nologies and demonstrate the need for continued cross-platform
comparisons. In fact, Affymetrix has released a new platform for
measuring gene expression in humans, which yields slight improve-
ments in accuracy and precision (Supplementary Figs. 1 and 4
online and Supplementary Table 4 online). We expect our study to
serve as a starting point for larger, more comprehensive compar-
isons. Furthermore, our findings show that improved quality
assessment standards are needed. Assessments of precision based
on comparisons of technical replicates appear to be standard
operating procedure among, at least, academic labs. We have
demonstrated that precision and accuracy assessments are not
informative unless performed simultaneously. We hope that our
study serves as motivation to create such standards. This will be
essential for the success of microarray technology as a general
measurement tool.

METHODS
Data analysis. A commonly used statistical model for microarray
data is Yijk ¼ yi + fij + eijk, in which Yijk represents measurement k
of log2-scale expression of gene i measured by platform j. Here yi

represents absolute gene expression in the log2 scale. fij denotes
the platform-specific probe or spot effect. Measurement error is
represented by eijk. For illustrative purposes we considered each of
the effects in this model to be random and statistically indepen-
dent from each other. We represented their variances with vy, vf
and ve.

Many researchers have observed a sizeable probe effect in
microarray data, which implies that nf is large12. This will result
in artificially large correlations when comparing absolute measure-
ments obtained using the same platform. To see this, note that
within-platform correlation is corr(Yij1, Yij2) ¼ (vy + vf)/(vy + vf
+ ve). This correlation is typically close to one, but only because vf
can be much larger than vy and ve. If we compare across platforms,
the correlation will not be as large, but only because the probe
effect is not common to the two platforms and therefore does not

affect the correlation corr(Yi1k, Yi2k) ¼ vy/(vy + vf + ve). These
theoretical predictions were confirmed empirically (Table 2).

A simple solution to the probe effect problem is to consider
relative expression instead of absolute expression. Most experi-
ments compare between different samples, thus in general this
type of measure is readily available. By considering the difference
of the Yijk from the two samples, the fi,j are cancelled out. Because
these are log2-scale measurements this difference is simply the log2

ratio of the absolute expression levels.
For the relative expression measurements, the within-platform

correlations were substantially smaller and the across lab correla-
tion was a bit larger (Table 2). We propose that only assessments
based on relative expression are useful. All the results presented in
this paper deal with relative expression.

Additional methods. Sample preparation, RT-PCR and micro-
array hybridization and experimental design are described in
Supplementary Methods online. The code and data necessary
to reproduce this work are available online (http://www.biostat.
jhsph.edu/~ririzarr/techcomp).

Note: Supplementary information is available on the Nature Methods website.

ACKNOWLEDGMENTS
We thank A. Nones and K. Broman for useful suggestions. The work of R.A.I.
is partially funded by the National Institutes of Health Specialized Centers of
Clinically Oriented Research (SCCOR) translational research funds (212-2494
and 212-2496). The work of G. Germino and I. Kim was partially funded by
NIDDK U24DK58757.

COMPETING INTERESTS STATEMENT
The authors declare that they have no competing financial interests.

Received 30 November 2004; accepted 22 March 2005
Published online at http://www.nature.com/naturemethods/

1. Kane, M. et al. Assessment of the sensitivity and specificity of oligonucleotide
(50-mer) microarrays. Nucleic Acids Res. 28, 4552–4557 (2000).

2. Hughes, T. et al. Expression profiling using microarrays fabricated by an ink-jet
oligonucleotide synthesizer. Nat. Biotechnol. 19, 342–347 (2001).

3. Yuen, T., Wurmbach, E., Pfeffer, R.L., Ebersole, B.J. & Sealfon, S.C. Accuracy and
calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic
Acids Res. 30, e48 (2002).

4. Barczak, A. et al. Spotted long oligonucleotide arrays for human gene expression
analysis. Genome Res. 13, 1775–1785 (2003).

5. Carter, M. et al. In situ-synthesized novel microarray optimized for mouse stem
cell and early developmental expression profiling. Genome Res. 13, 1011–1021
(2003).

6. Wang, H. et al. Assessing unmodified 70-mer oligonucleotide performance on
glass-slide microarrays. Genome Biol. 4, R5 (2003).

7. Kuo, W., Jenssen, T., Butte, A., Ohno-Machado, L. & Kohane, I. Analysis of mRNA
measurements from two different microarray technologies. Bioinformatics 18,
405–412 (2002).

8. Kothapalli, R., Yoder, S., Mane, S. & Loughran, T.P. Jr. Microarray results: how
accurate are they? BMC Bioinformatics 3, 22 (2002).

9. Li, J., Pankratz, M. & Johnson, J. Differential gene expression patterns revealed
by oligonucleotide versus long cDNA arrays. Toxicol. Sci. 69, 383–390 (2003).

10. Tan, P. et al. Evaluation of gene expression measurements from commercial
platforms. Nucleic Acids Res. 31, 5676–5684 (2003).

11. Youden, W. Enduring values. Technometrics 14, 1–11 (1972).
12. Irizarry, R.A. et al. Exploration, normalization, and summaries of high density

oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).
13. Dudoit, S. et al. Normalization for cDNA microarray data: a robust composite

method addressing single and multiple slide systematic variation. Nucleic Acids
Res. 30, e15 (2002).

14. Gentleman, R.C. et al. Bioconductor: open software development for
computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

15. Tsai, J. et al. Resourcerer: a database for annotating and linking microarray
resources within and across species. Genome Biol. 2 software0002.1–0002.4
(2001).

NATURE METHODS | VOL.2 NO.5 | MAY 2005 | 5

ARTICLES
©

20
05

 N
at

ur
e

 P
u

b
lis

hi
ng

 G
ro

up
  

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
e

m
et

h
o

d
s



Addendum: Standardizing global gene expression analysis between 
laboratories and across platforms
Members of the Toxicogenomics Research Consortium
Nat. Methods 2, 351–356 (2005).

The authors were listed as Members of The Toxicogenomics Research Consortium, with a complete list of authors available in a 
Supplementary Note online. A complete list of authors in alphabetical order and their affiliations follows.

Theodore Bammler1, Richard P Beyer1, Sanchita Bhattacharya2, Gary A Boorman3, Abee Boyles4, Blair U Bradford5, Roger E Bumgarner6, 
Pierre R Bushel7, Kabir Chaturvedi8, Dongseok Choi9, Michael L Cunningham3, Shibing Deng5, Holly K Dressman4, Rickie D Fannin7, 
Fredrico M Farin1, Jonathan H Freedman4, Rebecca C Fry2, Angel Harper8, Michael C Humble10, Patrick Hurban8, Terrance J Kavanagh1, 
William K Kaufmann5, Kathleen F Kerr11, Li Jing12, Jodi A Lapidus9, Michael R Lasarev13, Jianying Li7, Yi-Ju Li4, Edward K Lobenhofer8, 
Xinfang Lu14, Renae L Malek15, Sean Milton2, Srinivasa R Nagalla14, Jean P O’Malley14, Valerie S Palmer13, Patrick Pattee14, Richard S Paules7, 
Charles M Perou5, Ken Phillips8, Li-Xuan Qin11, Yang Qiu8, Sean D Quigley1, Matthew Rodland14, Ivan Rusyn5, Leona D Samson2, David A 
Schwartz4, Yan Shi5, Jung-Lim Shin12, Stella O Sieber7, Susan Slifer4, Marcy C Speer4, Peter S Spencer13, Dean I Sproles13, James A Swenberg5, 
William A Suk10, Robert C Sullivan12, Ru Tian5, Raymond W Tennant7, Signe A Todd14, Charles J Tucker7, Bennett Van Houten10, Brenda 
K Weis10, Shirley Xuan2 & Helmut Zarbl12

1Department of Environmental and Occupational Health Sciences and the Center for Ecogenetics and Environmental Health, University of 
Washington, Box 357234, Seattle, Washington 98195-7234, USA. 2Biological Engineering Division, Center for Environmental Health Sciences, 
Massachusetts Institute of Technology, 77 Massachusetts Avenue, 56-235 Cambridge, Massachusetts 02139, USA. 3National Toxicology 
Program, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, North Carolina 27709, 
USA. 4Duke University Medical Center, Department of Medicine, DUMC 2629, Room 275 MSRB, Research Drive, Durham, North Carolina 
27710, USA. 5Lineberger Comprehensive Cancer Center, University of North Carolina, CB#7295, Chapel Hill, North Carolina 27599, USA. 
6Department of Microbiology, Box 358070, University of Washington, Seattle, Washington 98195, USA. 7National Center for Toxicogenomics, 
National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, North Carolina 27709, USA. 8Icoria, 
Inc., 108 TW Alexander Drive, Building 1A, Research Triangle Park, North Carolina 27709, USA. 9Division of Biostatistics, School of Public 
Health and Preventive Medicine, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, USA. 10Division of 
Extramural Research and Training, National Institute for Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, 
North Carolina 27709, USA. 11Department of Biostatistics, University of Washington, Box 357234, Seattle, Washington 98195-7234 USA. 
12Fred Hutchinson Cancer Research Center, 1100 Fairview Ave North, Mailstop C1-1015, Seattle, Washington 98109, USA. 13Center for 
Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon 97239, USA. 14Center 
for Biomarker Discovery, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon 97239, USA. 15The Institute for 
Genomic Research, Rockville, Maryland, USA.

Corrigendum: Multiple-laboratory comparison of microarray platforms
Rafael A Irizarry, Daniel Warren, Forrest Spencer, Irene F Kim, Shyam Biswal, Bryan C Frank, Edward Gabrielson, Joe G N Garcia, Joel 
Geoghegan, Gregory Germino, Constance Griffin, Sara C Hilmer, Eric Hoffman, Anne E Jedlicka, Ernest Kawasaki, Francisco Martínez-
Murillo, Laura Morsberger, Hannah Lee, David Petersen, John Quackenbush, Alan Scott, Michael Wilson, Yanqin Yang, Shui Qing Ye 
& Wayne Yu
Nat. Methods 2, 345–349 (2005).

The GEO accession number for the array data is GSE2521.
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Standardizing global gene expression analysis between
laboratories and across platforms
Members of the Toxicogenomics Research Consortium1

To facilitate collaborative research efforts between multi-

investigator teams using DNA microarrays, we identified sources

of error and data variability between laboratories and across

microarray platforms, and methods to accommodate this

variability. RNA expression data were generated in seven

laboratories, which compared two standard RNA samples using

12 microarray platforms. At least two standard microarray types

(one spotted, one commercial) were used by all laboratories.

Reproducibility for most platforms within any laboratory was

typically good, but reproducibility between platforms and

across laboratories was generally poor. Reproducibility between

laboratories increased markedly when standardized protocols

were implemented for RNA labeling, hybridization, microarray

processing, data acquisition and data normalization.

Reproducibility was highest when analysis was based on

biological themes defined by enriched Gene Ontology (GO)

categories. These findings indicate that microarray results can

be comparable across multiple laboratories, especially when a

common platform and set of procedures are used.

Transcriptional profiling using DNA microarrays is one of many
genomic tools that is now being used to characterize biological
systems. Despite the increasing reliance on this technology by the
scientific community, the reproducibility of microarray data
between laboratories and across platforms has not been adequately
addressed. Now there is a range of DNA microarray platforms
including one- and two-channel formats, cDNA and oligonucleo-
tide microarrays, in-house spotted microarrays, and commercially
developed microarrays. There is also great diversity in the protocols
used by different laboratories for RNA preparation and labeling, as
well as in the instrumentation and software used for these proce-
dures. Moreover, there are many computational and statistical tools
for analyzing microarray images, quantitating spot intensities,
normalizing and background-correcting these data, and for deter-
mining which transcripts are differentially expressed1–3. The impact
of these multifaceted approaches toward assessing global gene
expression remains inadequately characterized4–7. The issue of
data reproducibility and reliability is crucial to the generation of,
and ultimately to the utility of, large databases of microarray
results8,9. Although the Microarray Gene Expression Data
(MGED) Society has coordinated an impressive effort to develop

guidelines for publishing microarray data through the minimal
information about microarray experiments (MIAME) stan-
dards10,11, these efforts have focused on documentation of experi-
mental details and results, and therefore do not directly address
issues of reproducibility between laboratories or across platforms. It
is thus critical to determine the effect of methodological variables
on the reproducibility, validity and generalizability of the results.

The Toxicogenomics Research Consortium was established in
November 2001, with advancing the application of gene expression
technologies in toxicology as one of it goals. The first Consortium
study systemically assessed microarray data and reproducibility of
the results within and between laboratories, as well as within and
between microarray platforms. In doing so, potential sources of
inter- and intralaboratory error and variability in the microarray
experimental results were identified. Two standard microarrays
were used by the Consortium laboratories: a spotted long oligo-
nucleotide microarray, produced by one of the Consortium labora-
tories (designated the standard spotted array), and a commercially
produced long oligonucleotide microarray (designated the stan-
dard commercial array). Consortium members also used a variety
of other microarray platforms that were ‘resident’ at each labora-
tory (Fig. 1). The resident arrays included both commercial
microarrays and in-house spotted microarrays, in long oligonu-
cleotide, short oligonucleotide and cDNA formats.

Each laboratory was provided with aliquots of two different RNA
samples that were prepared in one of the Consortium labora-
tories—a sample prepared from mouse livers (liver RNA; L), and a
sample prepared from equal amounts of RNA isolated from five
mouse tissues, liver, kidney, lung, brain and spleen (pooled RNA;
P). The microarray hybridizations were designed to determine the
reproducibility of gene expression measurements, the reproduci-
bility of measuring differential transcript representation when
comparing liver RNA to pooled RNA, and the feasibility of deriving
comparable results across disparate laboratories and platforms12.
These common RNA samples allowed us to focus on variation in
the technical and analytical approaches to microarray experimen-
tation without biological variation1,13,14. The results demonstrate
that the highest level of reproducibility between laboratories was
observed when a commercial microarray was used together with
standardized protocols for RNA labeling, hybridization, microarray
processing, data acquisition and data normalization. Whereas this

PUBLISHED ONLINE 21 APRIL 2005; DOI:10.1038/NMETH754

1A list of authors and their affiliations appears in the Supplementary Note online. Correspondence should be addressed to B.K. Weis (weis@niehs.nih.gov).
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may be expected, the extent of the improvement in reproducibility
that was obtained by such standardization was surprising. Notably,
even with low levels of data correlation, the biological themes that
emerge from these results are remarkably consistent.

RESULTS
Reproducibility of expression intensity with standard arrays
The standard spotted arrays and common RNA samples were
used to generate dataset A (Fig. 1 and Supplementary Table 1
online). Researchers in laboratories 1–7 each carried out eight
hybridizations: four that cohybridized liver RNA labeled with both
Cy3 and Cy5 (LvsL), and four that cohybridized liver RNA and
pooled RNA (LvsP). Each set comprised two dye-swapped sam-
ples15,16. In each of these seven laboratories researchers used their
own protocols for mRNA labeling, microarray hybridization, image
acquisition and data analysis (Supplementary Methods online).
These data were combined based on Unigene IDs. The reproduci-
bility of raw intensity values was fairly high within each laboratory
for LvsL, with median correlation coefficients ranging from 0.73 to
0.90 (Fig. 2a). When the data from each laboratory were compared
to the collective data from the other laboratories, however, the
correlations were significantly lower, between 0.21 and 0.41 across
laboratories (Fig. 2b). The intensity values for the pooled RNA

samples were extracted from LvsP data and used to make PvsP
comparisons in silico. The same trends were revealed (Figs. 2c,d,
green symbols): correlation coefficients for PvsP ranged from 0.68
to 0.91 within laboratories and from 0.23 to 0.44 across labora-
tories. Thus, inter-laboratory differences negatively impact data
reproducibility as measured by raw intensity values.

The first step toward evaluating reproducibility across labora-
tories was to standardize methods for the entry, storage and
retrieval of the microarray data generated from different platforms
and analysis software packages. Although this step did not sig-
nificantly affect data correlation within each laboratory, the corre-
lations across laboratories were improved dramatically (Dataset B;
Fig. 2 and Supplementary Table 1 online). Specifically, the median
LvsL correlation across laboratories improved from 0.33 to 0.56,
and the PvsP correlation improved from 0.32 to 0.59. This indicates
that an important source of variability for Dataset A was in the data
handling methods; using standardized file formats and gene
nomenclature improved the ability to detect correlations that are
inherent in the data.

To evaluate the impact of image analysis methods on data
reproducibility, we reanalyzed each microarray image from all
laboratories (for Dataset B) using the same software package
(GenePix Pro v4.1.1.28, Axon) and a common set of feature
extraction parameters (dataset C; Supplementary Table 1). Stan-
dardizing the method for image analysis did not significantly affect
the within-laboratory correlations, but did result in a modest
increase in the correlation of intensity data across the seven
laboratories (Fig. 2). The median correlation coefficient across
laboratories for LvsL increased from 0.56 to 0.59, and for LvsP from
0.59 to 0.64.

Notwithstanding these standardization efforts, the best intensity
correlation coefficient values across laboratories (0.59–0.64) were
relatively poor (Supplementary Table 1). This was likely due to the
diverse RNA labeling and hybridization methods used by the
laboratories. To address this issue, the LvsL and LvsP experiments
described above were repeated in each of eight laboratories using
common protocols for RNA labeling and hybridization, and the
standard commercial array (Dataset D). We applied a standard file
format, nomenclature and image analysis protocol to these data.
Intensity correlation coefficients were markedly improved for the
within-laboratory comparisons and marked improvements in
across-laboratory correlations were realized (Fig. 2). This was
observed for both LvsL (Figs. 2a,b) and PvsP values (Figs. 2c,d),
with median correlation coefficients improving to 0.87–0.92
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Figure 1 | DNA microarray platforms used across laboratories. Seven

laboratories used a total of 12 microarray platforms: seven spotted resident

cDNA and oligonucleotide platforms, three commercial resident platforms and

two standard microarray platforms. Each colored circle represents a laboratory.
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of circles (see Methods for description of platforms). An eighth laboratory

(not shown), the provider of the standard commercial array, contributed to

dataset D.
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Figure 2 | Within- and between-center Pearson correlation coefficients for gene expression intensity using standard arrays. (a–d) Liver and pooled RNA samples

were hybridized to two common platforms. Pearson correlations of raw intensity measurements were calculated for all possible pairwise combinations either

within a laboratory (a,c) or between laboratories (b,d) on either the standard spotted arrays (datasets A–C) or the standard commercial array (dataset D).

The box plots represent median values with upper and lower quantiles; the dotted lines represent maximum and minimum values.
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(Supplementary Table 1). Thus, standardization of RNA labeling
and hybridization protocols is an important contributor to signal
intensity correlations across laboratories.

Reproducibility of expression ratios with standard arrays
It is arguably important to evaluate reproducibility in gene expres-
sion ratio measurements between laboratories and across platforms.
Indeed, in most transcriptional profiling studies, it is ultimately the
relative changes in gene expression ratios that are used to infer
biological mechanisms and state changes. The first task was to
establish how the transcript level ratios between liver and pooled
RNA (LvsP) varied depending on the method used for data

normalization and background subtraction. We applied four differ-
ent approaches to Dataset C, wherein file format, nomenclature and
image analysis were standardized, but different labeling and hybri-
dization protocols were used in each laboratory. We found the
highest median correlation (0.69) of the LvsP log2 ratios between
laboratories using Lowess normalization without background sub-
traction (Supplementary Table 2 online). Thus, we applied Lowess
normalization without background adjustment to the gene expres-
sion measurements generated from all LvsP sample comparisons.

We calculated Pearson correlation coefficients comparing the
average expression ratios across laboratories for each transcript
feature on each platform, approximately 18,000 for datasets B and
C and 20,000 for dataset D (Fig. 3). Similar to the raw intensity
correlations (Fig. 2), the highest reproducibility was observed for
dataset D, in which essentially all procedures were standardized.
Once again, there was a marked increase in reproducibility in
dataset D relative to dataset C.

Reproducibility of expression ratios with resident arrays
To compare expression ratios across noncommercial resident arrays
(Figs. 1 and 4), we identified a set of common transcripts present
on all 12 platforms (Supplementary Table 3 online and Supple-
mentary Methods). Using stringent criteria, only 502 transcripts
were matched across the 12 microarray platforms. We limited
our analysis to these 502 genes to minimize the possibility that
poor correlations between platforms could be due to gene
misidentification. We applied Lowess normalization without
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Figure 4 | Resident array Pearson correlation.

Liver and pooled RNA samples were hybridized

to seven different resident microarray platforms

at eight laboratories (1–8). The average gene

expression ratios were calculated across replicate

microarrays within each laboratory and Pearson

correlation coefficients were calculated for the set

of 502 common genes (white boxes). In addition,

average pair-wise correlations between different

array replicates for each laboratory/platform

combination were calculated (grey boxes). Labels

comprise the laboratory number, type of array used

and the source of probes for the array.

Figure 3 | Within and between laboratory Pearson correlation coefficients for

log2 gene expression ratios using standard arrays. (a,b) Liver and pooled RNA

samples were hybridized to two common array platforms in seven laboratories

(1–7). Average log2 gene expression ratios were calculated across laboratories

and were used to calculate correlation coefficients. Graphic display of

pair-wise comparisons of average log2 gene expression ratios for liver versus

pooled RNA samples plotted for all genes on the standard spotted array

(a, lower panel) and the standard commercial array (a, upper panel).

Pearson correlation coefficients for pair-wise comparisons across laboratories

for the standard spotted array (b, lower panel) and the standard commercial

array (b, upper panel). Correlation coefficients greater than 0.80 are

highlighted (red).
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background subtraction as described above. For the single-color
resident arrays (Affymetrix), we applied quantile normalization17.

We ran the two-color resident arrays in quadruplicate and
the one-color arrays in duplicate. We calculated average expres-
sion ratios, as described above, across the replicate microarrays.
We calculated median Pearson correlation coefficients for the
set of 502 common transcripts (Fig. 4). As before, the reproduci-
bility for each platform within its resident laboratory was
generally very good, in particular for the commercial platforms.
Overall, the cross-platform correlations were extremely poor
both within and between laboratories, although we noted a few
acceptable correlations (40.75). We performed hierarchical
clustering of the log2-ratio values for the 502 common genes
(Supplementary Fig. 1 online). Overall, we obtained similar ratios
for a considerable percentage of the common genes for a majority
of laboratory and platform combinations. For example, 69% of all
laboratory and platform combinations had correlations greater
than 0.70; the highest correlation was observed within dataset D
(0.93). The remaining laboratory and platform combinations had
lower overall log2 ratios and did not correlate as well.

Microarray platform contributes most to reproducibility
To assess the relative contribution of the different sources of
technical variability in our gene expression measurements, we
fitted an ANOVA random effects model to the LvsL and LvsP
normalized data from the resident array platforms. For each of the
502 common transcripts, the model was used to partition the
observed variability in the data into variability owing to platform,
laboratory, microarray replicate, residual, tissue, tissue � platform,
tissue � laboratory and dye18 (Fig. 5 and Supplementary
Methods). These results indicate that more than half of the
variability observed in these data is attributable to the microarray
platform; differences between replicate microarrays and between
different laboratories contributed substantially less.

Emergence of biological themes using Gene Ontology
We found considerable variability in gene expression using gene-
by-gene comparisons. Subsequently, we determined whether con-
sistent biological themes could nonetheless be identified among

different microarray platforms and laboratories. We identified the
differentially expressed genes in the LvsP data for each laboratory
and platform combination, and used the lists to identify enriched
GO categories using EASE19 (Supplementary Methods). During
the generation of the lists of differentially expressed genes, we noted
a marked improvement in concordance (percent overlap in sig-
nificantly induced or repressed genes based on pair-wise compar-
isons of gene lists across laboratories) of gene lists for datasets with
increased standardization of technical methods (Supplementary
Table 4 online). For example, we observed good overall concor-
dance for dataset D, up to 80%. In addition, we found 277
transcripts that were significantly regulated, as defined by fold
change plus an error term (described in Supplementary Methods)
in all eight laboratories that contributed to Dataset D. For Dataset
C, concordance was considerably lower, only as high as 52.4
percent, and only 13 genes were found to be significantly regulated
in the six laboratories contributing to Dataset C.

We identified a list of 106 significant GO nodes that clustered
into three main branches across 24 laboratory and platform
combinations (Fig. 6 and Supplementary Table 5 online). Con-
cordance was highest for branch 2, which primarily represented
dataset D. More than 50% of the functionally enriched GO nodes
had 70% concordance within branch 2, whereas less than 50%
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Figure 5 | Sources of variation in gene expression measurements across

microarray platforms and laboratories for resident arrays. Contributions of

different sources of variability were estimated with an ANOVA mixed model.

Microarray platform was the largest source of variability, followed by

laboratory and array-to-array replication (array replicate).
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concordance was observed across all three branches. The decline in
concordance across datasets is likely due to the impact of branch 1,
which had relatively little GO node enrichment.

We found many similar biological themes across most laboratory
and platform combinations (Fig. 6). For example, three GO nodes
demonstrated enrichment across multiple laboratory and platform
combinations: steroid metabolism, humoral immune response and
coagulation. Enrichment of these nodes is readily explained by the
samples used in this study. The liver is a principal site of steroid
metabolism; it was thus expected to be an enriched node in liver
RNA when compared to pooled RNA. Likewise, the spleen is an
initiating organ in the humoral immune response; the presence of
spleen RNA in the pooled sample resulted in an enrichment of this
node relative to the liver sample. Finally, the liver has a role in
coagulation through the synthesis of coagulation factors (for
example, coagulation factor IX) and hepatocyte nuclear factors,
thus explaining the enrichment of this GO node.

Notably, the EASE score for the coagulation nodes on three
resident platforms (R7-cDNA, R1-cDNA and R3-C#2) was not as
significant (EASE score40.05) as for other laboratory and platform
combinations. This observation can be explained by the different
transcript representation across the arrays. For both the standard
spotted and standard commercial arrays, approximately 60 genes
map to the coagulation GO node. In contrast, this node is
represented by far fewer genes on the three resident arrays: 19
genes (R7-cDNA), 22 genes (R1-cDNA) and 25 genes (R3-C#2).
The EASE score is a function of both the number of genes for a
given GO node present on the array and the number of genes
present in the list of differentially expressed genes for that node.
Evaluating this further, several genes within the coagulation GO
node (for example, fibrinogen, coagulation factor X and serine (or
cysteine) proteinase inhibitor; Serpind1) were identified as differ-
entially expressed in the majority of the laboratory and platform
combinations; however, none of these genes were represented on
the arrays that were used for R7-cDNA, R1-cDNA, and R3-C#2 (all
of which represent distinct platforms). Therefore, the less signifi-
cant EASE scores (40.05) for these resident arrays were likely due
to a decreased representation of this GO node on these arrays.

DISCUSSION
Our results indicate that technical variables such as the microarray
platform, the labeling and hybridization protocols, and the
approaches to data analysis can profoundly affect the comparability
of gene expression experiments between laboratories. Comparabi-
lity is highest when these technical variables are standardized. We
found that comparable biological themes emerge from data across
disparate platforms and laboratories when GO nodes are used to
analyze collections of genes representative of biological themes
in lieu of direct gene-by-gene comparisons. This method of
analysis may therefore prove useful for mitigating potentially
confounding factors inherent in multisite and multiplatform
data. The relationships between GO categories, however, take the
form of directed acyclic graphs, meaning that ‘child’ categories can
have multiple ‘parents’. Thus, differences (and similarities) between
datasets can be exaggerated because related nodes (for example,
regulation of body fluids, hemostasis and coagulation) can contain
some of the same genes. Therefore, the identity of nodes and their
interrelatedness should be considered when attempting to assess
reproducibility and concordance of disparate datasets.

Our findings have important lessons for the field of geno-
mics. First, as one begins to use genomics to identify biological
responses or states, one must carefully assess the platform and
experimental (analytical) protocols used by the investigators. Our
results demonstrate that the microarray platform can be a source of
substantial gene expression variability and that commercial micro-
arrays, for a variety of reasons (such as uniform labeling and
hybridization techniques, consistent quality of the microarray itself),
yield results that are more comparable between laboratories. Second,
using genomics to identify environmental-response genes and bio-
logical pathways will require external validation, preferably through
focused, independent hypothesis-testing experiments. Thus, gene
expression results from microarray studies originating from one
laboratory should be considered to be a foundation for developing
testable hypotheses that can be addressed in subsequent experiments.
Third, our findings demonstrate that the generalizability of gene
expression studies can be limited between independent laboratories
and across platforms. Although independent laboratories can clearly
achieve similar results, this can be greatly facilitated by a substantial
commitment to using harmonized experimental protocols, similar
approaches to image and data analysis, and similar or identical
microarray platforms. Fourth, similar biological themes can emerge
from results obtained in the absence of harmonization, although the
findings should be treated with caution. Although we found com-
mon GO categories across laboratories and platforms, there were also
several distinct differences, indicating that it is easy to overinterpret
microarray results. Finally, our findings indicate that creation of gene
expression databases that incorporate results from multiple labora-
tories will be most useful if experimental standards are developed,
and data filters are applied before consolidation of the individual
experimental results. Without these steps, the results from compar-
isons across laboratories can be misleading and should be considered
with appropriate caution.

METHODS
Microarrays. Twelve total microarray platforms, including seven
spotted resident microarray platforms, three commercial resident
platforms and two standard platforms were used (Figs. 1 and 4).
Seven laboratories used the following four types of spotted
resident platforms: (i) a spotted cDNA microarray with target
cDNAs obtained from TIGR (laboratory 1); (ii) four different
spotted cDNA microarrays with target cDNAs obtained from the
National Institute of Aging (NIA) mouse clone sets (laboratories 2,
3, 5 and 7); (iii) a spotted oligonucleotide microarray with target
oligonucleotides obtained from Operon (laboratory 4); and (iv) a
spotted oligonucleotide microarray with target oligonucleotides
purchased from Compugen (laboratory 6). Three laboratories
used the following commercial resident platforms: (i) a long
oligonucleotide Agilent Mouse Development (MD) microarray,
(laboratories 2 and 3); (ii) a short oligonucleotide Affymetrix
microarray (laboratories 2 and 3); and (iii) a long oligo-
nucleotide Amersham microarray (laboratory 7). Two laboratories
used the following standard platforms: (i) the standard spotted
array, made in laboratory 1, by depositing 70-mer oligonucleotides
(Operon) representing 18,000 unique mouse transcripts onto
poly(L-lysine)-coated slides using a GeneMachines OmniGrid
Arrayer. Control spots corresponding to the 10-gene Arabidopsis
thaliana set (http://pga.tigr.org) were randomly spotted through-
out the microarray; and (ii) the standard commercial array
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that comprised in situ synthesized 60-mer oligonucleotides
representing B20,000 mouse transcripts, designed through
collaboration between the Toxicogenomics Research Consortium
and Agilent Technologies.

RNA labeling and hybridization. RNA labeling and hybridization
procedures used with the standard spotted array and non-
commercial resident arrays (datasets A, B and C) are described
in Supplementary Methods. Standard protocols used with the
standard commercial array are described in Supplementary
Methods. For the commercial resident arrays, individual labora-
tories performed labeling and hybridization according to the
manufacturer’s recommendations.

Microarray scanning and image analysis. Scanning and image
analysis methods used by the individual laboratories for the
standard spotted array (datasets A and B) and resident arrays
are described in Supplementary Methods. For dataset C, raw
image files for the standard spotted array were reanalyzed using
Axon GenePix Pro v4.1.1.28 using uniform image extraction
parameters (Supplementary Methods). Standardized protocols
for microarray scanning and image analysis used by all laboratories
for the standard commercial arrays (dataset D) are described in
Supplementary Methods.

Data preprocessing. Non-normalized intensity measurements
obtained from the standardized image processing protocol were
used to generate four normalized datasets by applying: (i) global
intensity normalization, (ii) global intensity normalization with
background adjustment, (iii) Lowess normalization with back-
ground adjustment applied to a log2-ratio versus log2–geometric-
mean intensity (R-I or M-A plot), and (iv) Lowess normalization
without background subtraction applied to an R-I plot20,21

(Supplementary Methods).

Statistical methods. To examine data reproducibility, Pearson
correlation coefficients were calculated between background-
corrected log2 intensity values for all nucleotide sequences repre-
sented on all microarrays. Transcripts represented across all
microarray platforms were identified by mapping to the NIA
mouse gene index (Supplementary Methods). When there was
more than one correlation coefficient in a comparison, a median
of the relevant correlations was presented. To assess the contribu-
tions of different potential sources of variability, an ANOVA mixed
model16 was fitted for each of the 502 genes represented on all the
platforms (Supplementary Methods). For each laboratory, a list of
statistically significant up- or downregulated genes was generated
based on a prespecified false discovery rate of 0.05. This rate was
calculated in a step-up fashion for the mixed model22.

File format. For dataset A, microarray images were analyzed at
individual laboratories using different (in-house) image analysis
software packages (Supplementary Methods). Raw image
extracted data files were stored in a shared database by extracting
data from columns of interest from the image analysis output files.
For datasets B, C and D, the output files from extracted images
were directly stored on an ftp server in a common file location and
flat file format without parsing. The datasets were combined based
on Unigene IDs.

Scoring and evaluation of Gene Ontology categories. Methods
for scoring and evaluating GO categories are described in
Supplementary Methods.

Additional methods and information. Tissue extraction and RNA
isolation procedures are described in Supplementary Methods.
Additional material and primary (raw) data are available online
(http://dir.niehs.nih.gov/microarray/trc/) and via GEO database
(accession number GSE2458).

Note: Supplementary information is available on the Nature Methods website.
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Addendum: Standardizing global gene expression analysis between 
laboratories and across platforms
Members of the Toxicogenomics Research Consortium
Nat. Methods 2, 351–356 (2005).
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Independence and reproducibility across
microarray platforms
Jennie E Larkin1, Bryan C Frank1, Haralambos Gavras2, Razvan Sultana1,3 & John Quackenbush1,3–5

Microarrays have been widely used for the analysis of gene

expression, but the issue of reproducibility across platforms

has yet to be fully resolved. To address this apparent problem,

we compared gene expression between two microarray

platforms: the short oligonucleotide Affymetrix Mouse

Genome 430 2.0 GeneChip and a spotted cDNA array using

a mouse model of angiontensin II–induced hypertension.

RNA extracted from treated mice was analyzed using

Affymetrix and cDNA platforms and then by quantitative

RT-PCR (qRT-PCR) for validation of specific genes. For the

11,710 genes present on both arrays, we assessed the

relative impact of experimental treatment and platform

on measured expression and found that biological treatment

had a far greater impact on measured expression than did

platform for more than 90% of genes, a result validated by

qRT-PCR. In the small number of cases in which platforms

yielded discrepant results, qRT-PCR generally did not confirm

either set of data, suggesting that sequence-specific effects

may make expression predictions difficult to make using

any technique.

DNA microarrays have afforded biological research scientists the
opportunity to assay patterns of gene expression on a global scale.
Although there have been many successful applications of this
technology, often with high rates of validation using an alternate
technology such as northern blot analysis or qRT-PCR, several
published studies have called into question the validity of micro-
array assays, in part because of observed disparities between results
obtained by different groups analyzing similar samples1–8. As
confident practitioners of spotted cDNA microarray technology,
we have often been puzzled by the apparent dichotomy of these
competing views. In many instances, it seems that the lack of
concordance between microarray platforms designed to assay
biologically relevant patterns of expression is a failure not of the
platform or the biological system, but rather a reflection of the
metrics used to evaluate concordance. Other meta-analyses have
focused on examining overlapping lists of significant genes,
neglecting the fact that in many instances these were derived
from not only different platforms but also using vastly different

approaches to data analysis5,9,10—an effect we have seen even when
analyzing a single dataset generated on a single platform.

Based on our experience with hybridization-based approaches,
we decided to test platform dependence in assessing a simple
biological system, asking whether platform or treatment was the
major factor influencing the patterns of observed gene expression.
We chose a model system we have previously studied using cDNA
microarrays, the effects of short and long-term angiotensin II
exposure on cardiac gene expression in a mouse model of hyper-
tension11 (although in this analysis we used an independent
collection biological replicate RNA samples). We chose to compare
treated animals to matched controls using cDNA microarrays and
Affymetrix GeneChips; the former because it is a two-color plat-
form with which we have a great deal of experience and the latter as
it is a widely used commercial oligonucleotide-based platform.

One challenge in designing this experiment was due to the
difference in the way that data are collected on these two platforms.
Whereas individual Affymetrix arrays are used to assess single
biological samples, for cDNA arrays typically two RNA samples
are cohybridized: a treated sample and a reference or control
sample. Consequently, for the cDNA array assays, we chose to
use a common reference design in which each experimental RNA
sample is cohybridized with a reference RNA pool as this design
most closely mimics the Affymetrix approach.

At every step in the process, from the initial amplification of the
RNA to the final steps in the analysis, care was taken to treat the
biological samples and the data in an identical fashion as to not
introduce artifacts; only in the platform-specific stages of the
experiment (RNA labeling, hybridization, data extraction and
normalization) was a distinction made between the platforms.

The resulting data were transformed to produce a comparison
between treated and matched control animals to address a simple
biological question: what is the difference in response to elevated
levels of angiotensin II as the length of the exposure increases?
In the context of comparing platforms, the question then becomes:
given a biological question evaluated on two different micro-
array platforms, are there platform-specific differences that mask
the underlying biological response? The answer to this second
question is no, but this answer is qualified by some minor effects we
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observed that point to challenges inherent in using any hybridiza-
tion based assay.

RESULTS
Study design
Previous experience with DNA microarray assays led us to believe
that in a test of a biological system, biological differences between
samples should be more significant than platform-specific effects in
assaying gene expression. Our previous work, from a large number
of studies in diverse species, indicated that approximately 90% of
genes identified as ‘significant’ in microarray assays are ultimately
confirmed by an alternate technique such as qRT-PCR. The
biological system we chose to analyze here was one we had
previously studied, the effects of short- and long-term exposure
to angiotensin II (ref. 11). Ten-week-old C57BL/6J male mice were
treated with either angiotensin II or saline for either 24 h (acute
exposure) or 14 d (chronic exposure), at which time heart tissue
was collected for RNA extraction. As the quantities of RNA
available for this study were limited, total RNA was amplified
using a modification of the Eberwine protocol12,13, producing
antisense cRNA. Amplification of 2.0 mg of total RNA resulted in
47.0 7 4.3 mg cRNA. The cRNA was then processed separately for
hybridization on TIGR 25K cDNA arrays and Affymetrix Mouse
Genome 430 2.0 GeneChip.

TIGR cDNA microarray procedure
For cDNA arrays, fluorescently-labeled cDNA targets were prepared
from cRNA; the labeled cDNAs were purified, combined as appro-
priate, and hybridized to the cDNA arrays constructed14 using
27,010 cDNA clones from the NIA 15k and BMAP mouse cDNA
clone sets; these arrays contain approximately 22,000 unique
transcripts. All samples were hybridized in duplicate with dye-
reversal replicates, against amplified cRNA prepared from the
Universal Mouse Reference RNA (Stratagene). Hybridization
data were saved as 16-bit .tiff image files and expression data
were extracted using TIGR Spotfinder15. Data were consistent
across biological replicates (RNA derived from independent ani-
mals hybridized to independent arrays) and technical replicates
(individual RNA samples hybridized to multiple independent
arrays), with 87.7 7 0.7% ‘good’ spots identified by SpotFinder
quality control parameters. Prior to data analyses, signals were
normalized using a locally weighted scatterplot-smoothing regres-
sion (LOWESS) algorithm16 implemented in MIDAS15 followed by
standard deviation regularization between array subgrids, and dye-
flip consistency checking.

To facilitate comparisons between platforms, the expression data,
measured relative to the Stratagene Reference RNA, were used to
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Figure 1 | HCL and gene profiles of two-factor ANOVA results comparing

Affymetrix PM-MM to TIGR cDNA microarray data. (a,b) Heat map and

dendrogram representations of genes that are nonsignificant (a) and

significant (b) for platform-specific effects; here each row represents a

gene and each column represents a particular sample. (c–f) Also shown

are examples of gene expression profiles showing the expression level for

particular genes in each sample measured on spotted cDNA and Affymetrix

microarrays for interaction significant (c) and interaction nonsignificant (d–f)
genes. The profiles on the left of each plot represent expression levels for

individual samples measures on cDNA arrays, and those on the right

represent measured levels in the corresponding samples assayed on

Affymetrix GeneChips.
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calculate the log2 of gene expression in treated animals relative to
the average expression level for the appropriate saline control. This
approach had the added benefit of providing robust values for each
array element, incorporating both biological and technical repli-
cates. Consistency of expression across biological replicates within
each of the two saline control groups was assessed by using the same
procedure to compare each individual measurement to the mean of
the appropriate group. All subsequent analyses were performed
on these normalized datasets of biologically relevant measures,
using only those 24,759 array elements for which detectable
hybridization signals were available for more than 50% of the
hybridization assays.

Affymetrix GeneChips procedure
For Affymetrix GeneChips, antisense cRNA from each biological
sample was used as the starting material for the second cycle
of the Affymetrix small-sample protocol, to produce biotinylated
antisense cRNA; these samples were then chemically fragmented

and labeled, then hybridized to Affymetrix Mouse Genome 430
2.0 GeneChips. The two acute saline biological replicate samples
were each subjected to three independent amplification and
hybridization cycles; as these technical replicates had very high
reproducibility, the other 12 biological samples (4 chronic saline,
4 acute angiotensin II, 4 chronic angiotensin II) had a single
technical replicate each. Affymetrix GCOS quality control
parameters indicated high quality, with consistent hybridizations
for all samples; background measurements were nominal (28.1 7
0.6) and noise was low (1.02 7 0.06) across all 18 chips. We
exported CEL files from the Affymetrix GCOS software and
normalized in dChip17 to the median intensity using two
models, the PM-MM model (which subtracts the background
mismatch probe intensity from the perfect match probe intensity)
and the PM-only model (which ignores the mismatch probes
and uses only the perfect match probes for each gene). As
was the case with the cDNA arrays, the measured expression levels
were log2 transformed and used to calculate log2 (angiotensin
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Figure 2 | PCA of microarray data from TIGR cDNA

array and Affymetrix mouse GeneChip arrays.

(a,b) Three-dimensional plots show the relative

relationship between samples based on 5,144

genes whose expression was found to be platform

independent (a) and 514 genes found to exhibit

platform-specific effects (b). In each plot, samples

are represented as spheres and each is labeled

by platform and treatment (acute or chronic

angiotensin II treatment relative respective

controls). Data from acute angiotensin II–treated

samples on the Affymetrix platform are blue and

on the TIGR platform are green. Data from chronic

angiotensin II–treated samples on the Affymetrix

platform are red and on the TIGR platform are

pink. PCA of genes that do not differ statistically between platforms (a) show that biological treatment (acute or chronic) groups data more strongly than does

platform, with acute samples above the x-z plane and chronic samples below. In contrast, PCA of discordant genes shows strongly divergent grouping of acute

and chronic samples profiled on Affymetrix arrays from each other and from samples profiled on the TIGR cDNA arrays.

Affymetrix acute

Affymetrix acute

y

y

x

x

z

z

Affymetrix chronic

Affymetrix chronic
TIGR acute

TIGR acute
TIGR chronic

TIGR chronic

a b

Table 1 | Results of qRT-PCR ‘validation’ for genes that agreed and disagreed across platforms. Correlation coefficients are given between log2

expression ratios between the Affymetrix GeneChip microarray platform, for both PM-only and PM-MM models, the TIGR mouse cDNA array and qRT-
PCR. Correlation table for the gene plasminogen activator inhibitor 1, which showed high correlations of Affymetrix gene expression measurements
to qRT-PCR, but TIGR expression measurements were divergent. Correlation tables of microarray measurements to qRT-PCR values for ten genes
that had no agreement in expression between Affymetrix and TIGR microarray platforms and for ten genes whose expression was consistent
across platforms.

Plasminogen activator inhibitor-1 (Serpine1)

Affy PM-only Affy PM-MM TIGR qRT-PCR

Affy PM-only 1

Affy PM-MM 0.998 1

TIGR 0.089 0.087 1

qRT-PCR 0.893 0.914 0.082 1

Genes that disagree across microarray platforms, without Serpine1

Affy PM-only Affy PM-MM TIGR qRT-PCR

Affy PM-only 1

Affy PM-MM 0.756 1

TIGR 0.081 0.044 1

qRT-PCR 0.386 0.119 0.024 1
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II–treated/mean saline control) for both acute and chronic expo-
sure to angiotensin II.

Comparative analysis of the two platforms
To ensure standard treatment of both datasets in the analysis,
comparisons between platforms were made based on probe-level
associations provided by the Resourcerer18 database. The Affyme-
trix Mouse Genome 430 2.0 GeneChip contains more than 39,000
probe sets, and the TIGR platform contains greater than 27,000
array elements. These two platforms overlap by 11,710 TIGR
Tentative Consensus sequences, but not all of these elements
provided useful hybridization data; although the PM-only model
provided data for all probe sets, the Affymetrix PM-MM model had
a 49% absent call rate and the TIGR platform had a 12% absent call
rate. Of the 11,710 tentative consensus sequences annotated using
both platforms 10,177 were present in 50% (8/16) of the experi-
ments, but these generally were missing data on one of the two

platforms. But 5,853 genes had data in 80% of the 16 combined
TIGR and Affymetrix PM-MM experiments, and these data for
these genes were used for subsequent analysis.

The expression patterns for the 5,853 ‘good’ genes were subjected
to comparative analysis of the platforms. A two-factor ANOVA was
used to quantify the impact of platform (Affymetrix mouse
GeneChip 430 2.0 or TIGR mouse cDNA array) and experimental
treatment (acute or chronic angiotensin II treatment) on measured
gene expression values. For most of the genes shared between the
two arrays, the gene expression data were remarkably consistent
and independent of platform (Fig. 1), as biological treatment had a
greater impact on gene expression values than did microarray
platform. We found that 88% of the genes had no significant effect
(P r 0.01) of microarray platform on the expression values
(n ¼ 5,144). Analysis of these genes indicated that in most
instances, the pattern of expression across samples was similar,
independent of platform, but that the relative amplitude of the
change was greater on one platform than the other. The interaction
term in the ANOVA model identifies genes with divergent gene
expression responses between the two platforms (Fig. 1). These
terms were of particular interest as they defined a small subset of
genes for which the two platforms gave strongly divergent mea-
surements, both in amplitude and direction of gene expression.
Only 9% of genes (n ¼ 504) of the 5,853 genes had significant
interaction terms in the two-factor ANOVA (P r 0.01); the
majority of these showed a strong transcriptional response on the
Affymetrix GeneChip but not the TIGR cDNA array (Fig. 1).

Principal components analysis (PCA) is used to reduce the
dimensionality of multidimensional datasets. PCA was performed
on the two Affymetrix data models (PM-MM and PM-only) and
on the TIGR cDNA microarray data, to determine whether
experiments clustered primarily by platform or by experimental
treatment. The primary principle component accounted for 32% of
the variation in the data and differentiated between acute and
chronic angiotensin II treatments (Fig. 2). The second and third
principle components accounted for 28% and 11% of the variation
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Figure 3 | qRT-PCR validation of microarray results for plasminogen activator

inhibitor 1 (PAI-1). Expression levels of treated animals relative to the

average of the appropriate controls are shown for each of the four platforms,

TIGR cDNA, Affymetrix GeneChips with the PM-MM model, for the PM-only

model, and qRT-PCR. PAI-1 was the only example where a discordant result

between the array platforms had one platform confirmed by qRT-PCR as can

be seen by the correlation between expression profiles.

Figure 4 | Hierarchical clustering of expression

profiles for genes selected for validation. Shown

are heat map representations for measured

expression on Affymetrix arrays for the PM-only

and PM-MM models, cDNA arrays (TIGR mouse

array), and qRT-PCR. (a) For the ten genes that

had no correlation between array platforms, qRT-

PCR had poor correlation with all hybridization-

based assays. (b) In contrast, for gene that had

good correlation between arrays, qRT-PCR also

correlated well with all measured expression

levels. All data are presented as log2 (angiotensin

II–treated/mean saline control).
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in the data and differentiated between biological replicates within
each treatment and platform differences. Biological replicates were
more tightly clustered in the acute angiotensin II samples than in
the chronic angiotensin II samples.

Validation of measurements for shared expression profiles
We used qRT-PCR to validate gene expression for ten genes that
shared similar expression profiles across both platforms, represent-
ing the group of genes that had nonsignificant interaction terms
in the 2-factor ANOVA. We also performed qRT-PCR on 11 genes
for which there was a significant interaction term; these genes
had disparate expression profiles across the two microarray plat-
forms. Our goal was to use qRT-PCR to identify which platform
gave the more accurate result when the data from the two platforms
were discrepant. As noted previously, all gene expression values,
whether derived from microarray or from qRT-PCR, were
represented as the log2-transformed ratios of the experimental
(angiotensin II–treated) gene expression relative to the mean of
the time-matched saline-control values. The expression vectors for
each gene on each of the four platforms was recorded and pair-wise
Pearson correlation coefficients were calculated to assess the
degree of concordance between platforms (Table 1). The list of
individual genes assayed and the primers used for qRT-PCR are
available (Supplementary Methods online and Supplementary
Table 1 online).

For the ten genes that shared similar expression profiles
across Affymetrix and TIGR microarrays, there was strong con-
cordance between Affymetrix and TIGR values (0.81 for PM-MM
and 0.85 for PM-only), as was expected. Correlations were very
tight (0.98) between the two Affymetrix data models, PM-only
and PM-MM, for these ten genes. When the microarray platforms
gave consistent results, qRT-PCR also had a robust correlation
between both platforms, with correlations between 0.61 and
0.67 (Figs. 3 and 4).

For the eleven genes with disparate profiles between platforms,
only one gene, plasminogen activator inhibitor 1 (Serpine1, also
known as PAI-1), gave robust confirmation of one platform over
the other; qRT-PCR values for PAI-1 expression mirrored Affyme-
trix PM-only and PM-MM values, with correlation coefficients
exceeding 0.89. For the remaining ten genes with disparate gene
expression profiles, qRT-PCR validated neither platform. This was
not the result of poor-quality qRT-PCR runs, as each reaction was
run in quadruplicate, with common and disparate genes assayed in
the same run. Thus, for the majority of the genes whose profiles
disagreed across microarray platforms, qRT-PCR validated neither
platform but provided yet a third expression profile.

DISCUSSION
Despite the common perception that gene expression values are not
reproducible across platforms1–8, our analysis of cardiac gene
expression yielded consistent results for greater than 90% of
genes in common between the Affymetrix GeneChip and TIGR
cDNA arrays. qRT-PCR analysis was used to independently verify
expression for the genes that had similar expression values in both
platforms. There are a variety of factors that may contribute to the
reproducibility of the results, and the independence of these results
from platform.

The first, and most obvious, reason is that the science and
expertise of using microarrays as a reliable research tool and

repeatability within any one platform has progressed rapidly over
the last five years. Whereas earlier microarray experiments some-
times could not reproduce results between laboratories using the
same RNA and same microarray technology8, each platform
(GeneChip and cDNA arrays) has progressed substantially in recent
years in reliability and reproducibility. If only one of the two
platforms being compared gives consistent, reliable data, then
comparisons between the two platforms are meaningless as they
cannot give consistent results.

As previously stated9, it is essential to have a reliable, consistent
method of identifying genes on both platforms. Gene expression
values be compared effectively only if the genes are accurately
identified on both platforms. This can be challenging, as oligonu-
cleotide arrays may be generated from very different information
than are EST-based cDNA arrays. In this study, we used TIGR
tentative consensus sequences for both platforms. The cross-plat-
form comparisons can only be as good as the gene identification
method. The results of this study indicate that tentative consensus
sequences reliably identify the vast majority of genes correctly, be
they based on short oligonucleotide sequences or long cDNAs
generated from ESTs.

The methods used for data handling may also influence the
repeatability of gene expression values across platforms9. In this
study, measurements on both platforms were presented as the log2

ratio of gene expression in response to angiotensin II treatment
relative to the mean value of the matching saline control. One
reason expressing gene expression as a relative ratio may give
more consistent results across platforms, is that this represents
a more biologically meaningful value than intensity measures.
Hybridization-based assays rely on a wide range of parameters
reflecting the properties of the probe and target molecules, which
can make it difficult to compare across platforms. But these factors
should be less important when comparing a single RNA species
between different conditions within the same platform—the
question which most often is the one we want to address in
biological assays. Knowing how a transcript level changes in
response to a particular stimulus often is the more relevant
parameter to use in comparing platforms.

Having optimally pure and consistent starting material may also
improve the reliability between platforms. It is possible that in
previous studies, some of the difference in results between Affyme-
trix GeneChip results and cDNA arrays may have been due to the
discrepancy in RNA handling: a round of amplification is built
into the Affymetrix procedure but not into the cDNA protocol.
As initial RNA quantities were limited in this study, all RNA
was subjected to a round of RNA amplification, producing anti-
sense mRNA. Thus both Affymetrix and TIGR cDNA arrays
used amplified RNA as a starting material, minimizing any
difference that amplification versus no amplification may have
caused, otherwise19.

A fraction of the genes examined (8–10%) had different results
between the two platforms. The common perception upon encoun-
tering this type of inconsistency between platforms is to identify
one platform as providing superior and more consistent results
than does the other platform. However, when gene expression was
verified using qRT-PCR, results of only one of the eleven genes
tested supported one microarray platform over the other. One
possibility is that these nonverifiable genes may represent splice
variants. The qRT-PCR primer is based on the TIGR tentative
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consensus sequence, which is derived from the assembly of multiple
expressed sequence tags (ESTs) and gene sequences. Because the
genome is still imperfectly annotated, the Affymetrix probe set may
target one or more variants, the cDNA probe on the spotted array
one or more others, and the qRT-PCR probe yet others. If these
potential splice variants are differently expressed from each other, it
would not be surprising that each platform would measure slightly
different patterns of expression. Alternately, gene family members
may cross-hybridize with both the cDNAs and Affymetrix probe
sets and assaying different combinations of these family members,
and qRT-PCR, possibly, only a single member.

To address these questions, we mapped the Affymetrix probe sets
and the EST sequences corresponding to the cDNA clones arrayed
on the TIGR arrays to both the genome sequence and each other.
Not surprisingly, corresponding probes on each platform mapped
consistently to the same genomic locus. But when searching the
Affymetrix probe sequences against the corresponding TIGR EST
sequences, a distinct difference was found between those genes that
agreed between platforms versus those that did not. For the genes
that had similar expression patterns across platforms, nine out of
ten had 100% perfect sequence matches for Affymetrix Probe
sequence to TIGR EST sequence. The one that did not, was also
borderline nonsignificant (P ¼ 0.013), suggesting some level of
platform specificity. In contrast, only five of the eleven tentative
consensus sequences that disagreed across all three platforms had
Affymetrix probes that mapped to the corresponding TIGR EST,
supporting the hypothesis that the two platforms were interro-
gating different sequences for the genes that disagreed across
platforms. The alignment of multiple ESTsequences to the genome
in the region containing the array probes generally suggested
multiple splice variants in regions where there was generally a
single annotated gene structure in the EnsEMBL database. These
data suggest that unannotated splice variants may be the major
contributing factor to our observation, but without experimental
validation for the gene structure it is difficult to claim that a
particular platform maps to one splice variant or another.

This study demonstrates that microarray measurement of gene
expression and RNA abundance can be a robust method, providing
comparable results from different platforms and validates the
findings of a recent, related report20 that demonstrated consistency
between laboratories and platforms, provided a consistent analytic
approach. But this requires not only careful attention to the
experimental details surrounding data collection and analysis, but
consistent gene annotation and reliable means of assessing the
quality of each experimental assay. If careful attention is paid to
these elements, our data indicate that for the majority of genes
expression is independent of platform in the sense that biological
effects are greater than platform effects.

In doing such analyses, researchers should carefully consider the
methods used to compare microarray results as these can have a
profound effect on the conclusions that are ultimately derived. In
this study we used biological end-points, that is, changes in
expression levels in treated animals relative to saline controls,
rather than arbitrary measurements that were based on technology.
Multiple comparative techniques (two-factor ANOVA, principle
components analysis, hierarchical clustering) all gave similar
results, affirming our conclusion that microarrays can produce
reliable, consistent data that are largely independent of platform.
As public databases of microarray experiments (GEO and

ArrayExpress) continue to rapidly accumulate expression data,
the results presented here should provide some level of confidence
that high-quality microarray results can provide a valuable resource
for meta-analysis directed at uncovering biological phenomena.

METHODS
TIGR cDNA microarray data analysis. Gene expression levels,
were a measure of the log2 of expression in experimental samples
relative to those in the Stratagene Mouse Universal Reference RNA
were normalized using local Lowess and filtered to eliminate
inconsistent data amongst replicates. Log2 (angiotensin II–
treated/Saline control), mean log2 values for each array element
were determined for both the acute saline (n ¼ 2) and chronic
saline (n ¼ 4) control treatments. The appropriate mean saline
control log2 value was then subtracted from the associated log2-
transformed acute angiotensin II–treated samples (n ¼ 4) or
chronic angiotensin II samples (n ¼ 4), as log2 (angiotensin II–
treated/mean saline control) ¼ log2 (angiotensin II–treated) – log2

(mean saline control).

Affymetrix Genechip data analysis. We exported .cel files from
Affymetrix GCOS software and normalized in dChip17 to the
median intensity using two models, the PM-MM model and the
PM-only model. Gene expression values were then log2 trans-
formed. For comparison with the biological measures on the TIGR
cDNA arrays, mean values for each probe set were calculated for
both the acute saline (n ¼ 6) and chronic saline (n ¼ 4) control
groups. The normalized, log2-transformed experimental values
from the acute and chronic angiotensin II treatments were
calculated to express log2 (angiotensin II–treated/mean saline
control). In the PM-MM model, only genes with present calls
(51.3 7 0.6%) were included in subsequent data analysis, result-
ing in 22,212 probe sets from the PM-MM model. The PM-only
model provided data for all probe sets on the array.

Data comparison. All microarray data were represented as log2

(angiotensin II–treated/mean saline control) for comparison
across platforms. To ensure standard treatment of both datasets
in analysis, all Affymetrix probe sets and TIGR cDNA clones
were mapped to TIGR Mouse Gene Index tentative consensus
sequences using RESOURCERER18 (http://www.tigr.org/tdb/tgi).
In instances when a tentative consensus sequence was represented
by two or more probes on the array, which occurred on both
TIGR and Affymetrix platforms, the mean of the log2 ratios of
gene expression for that gene was calculated in each experiment.
All functional analyses were based on tentative consensus sequence
assignments; GO terms were mapped directly to TIGR tentative
consensus sequences, whereas KEGG and GenMAPP pathways
were mapped to tentative consensus sequences via LocusLink
identifiers. Expression data from all assays on all platforms
is available via ArrayExpress (accession numbers E-TIGR-121,
E-TIGR-122, A-TIGR-5 and A-AFFY-45).

Real-time RT-PCR. Validation of gene expression levels performed
using SYBR Green assays performed on the ABI Prism 7900HT
Sequence Detection System as described in Supplementary Meth-
ods. Expression for each gene was determined as the ratio of the
log2 (angiotensin II–treated/mean saline control) ¼ log2 (angio-
tensin II–treated) – log2 (mean saline control) for comparison
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with array data. Correlation coefficients between platforms were
calculated using Excel (Microsoft).

Additional Methods. Details of all experimental protocols, includ-
ing animal and tissue handling procedures, RNA extraction and
labeling, hybridization, data extraction and data analysis, are
available in the Supplementary Methods online.

Note: Supplementary information is available on the Nature Methods website.
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Research tools known as
DNA microarrays are
already clarifying the
molecular roots of health
and disease and
speeding drug discovery.
They could also hasten
the day when custom-
tailored treatment plans
replace a one-size-fits-all
approach to health care

DOT PATTERNS EMERGE when DNA microarrays
analyze tissue samples. Individual differences in
those patterns could one day help doctors match
treatments to the unique needs of each patient. 

BY STEPHEN H. FRIEND 
AND ROLAND B. STOUGHTON

44 S C I E N T I F I C  A M E R I C A N

THEMAGIC
OF MICROARRAYS

Copyright 2002 Scientific American, Inc.



MOS T  P EOP LE  S T RI CK E N with a cancer called diffuse large B cell lym-
phoma initially respond well to standard therapy. Yet in more than half of cases,
the cancer soon roars back lethally. Physicians have long assumed that the reason
some individuals succumb quickly while others do well is that the disease actually
comes in different forms caused by distinct molecular abnormalities. But until two
years ago, investigators had no way to spot the patients who had the most viru-
lent version and thus needed to consider the riskiest, most intensive treatment.

Then a remarkable tool known as a DNA microarray, or DNA chip, broke the
impasse. It enabled a team of researchers from the National Institutes of Health,
Stanford University and elsewhere to distinguish between known long- and short-
term survivors based on differences in the overall pattern of activity exhibited by

Copyright 2002 Scientific American, Inc.
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hundreds of genes in their malignant cells
at the time of diagnosis. That achieve-
ment should lead to a diagnostic test able
to identify the patients in greatest danger.

DNA microarrays, first introduced
commercially in 1996, are now mainstays
of drug discovery research, and more
than 20 companies sell them or the in-
struments or software needed to interpret
the information they provide. The devices
are also beginning to revolutionize how
scientists explore the operation of normal
cells in the body and the molecular aber-
rations that underlie medical disorders.
The tools promise as well to pave the way
for faster, more accurate diagnoses of
many conditions and to help doctors per-
sonalize medical care—that is, tailor ther-
apies to the exact form of disease in each
person and select the drugs likely to work
best, with the mildest side effects, in those
individuals. 

Tiny Troupers
THE ARRAYS COME IN several vari-
eties, but all assess the composition of
genetic material in a tissue sample, and
all consist of a lawn of single-stranded
DNA molecules (probes) that are teth-
ered to a wafer often no bigger than a
thumbprint. These chips also capitalize
on a very handy property of DNA: com-
plementary base pairing. 

DNA is the material that forms the
more than 30,000 genes in human cells—
the sequences of code that constitute the
blueprints for proteins. It is built from
four building blocks, usually referred to
by the first letter of their distinguishing

chemical bases: A, C, G and T. The base
A in one strand of DNA will pair only
with T (A’s complement) on another
strand, and C will pair only with G.

Hence, if a DNA molecule from a tis-
sue sample binds to a probe having the
sequence ATCGGC, an observer will be
able to infer that the molecule from the
sample has the complementary sequence:
TAGCCG. RNA, which is DNA’s chem-
ical cousin, also follows a strict base-pair-
ing rule when binding to DNA, so the se-
quence of any RNA strand that pairs up
with DNA on a microarray can be in-
ferred as well. 

Complementary base-pairing reac-
tions have been integral to many biologi-
cal tests for years. But amazingly, DNA
microarrays can track tens of thousands
of those reactions in parallel on a single
chip. Such tracking is possible because
each kind of probe—be it a gene or a
shorter sequence of code—sits at an as-
signed spot within a checkerboardlike
grid on the chip and because the DNA or
RNA molecules that get poured over the
array carry a fluorescent tag or other la-
bel that can be detected by a scanner.
Once a chip has been scanned, a comput-
er converts the raw data into a color-cod-
ed readout. 

Scientists rely on DNA microarrays
for two very different purposes. So-called
genotype applications compare the DNA
on a chip with DNA in a tissue sample to
determine which genes are in the sample
or to decipher the order of code letters in
as yet unsequenced strings of DNA. Fre-
quently, however, investigators these days

use the devices to assess not merely the
presence or sequence of genes in a sample
but the expression, or activity level, of
those genes. A gene is said to be expressed
when it is transcribed into messenger
RNA (mRNA) and translated into pro-
tein. Messenger RNA molecules are the
mobile transcripts of genes and serve as
the templates for protein synthesis. 

Gene Hunters
RESEARCHERS have employed the ge-
notype approach to compare the genes
in different organisms (to find clues to
the evolutionary history of the organ-
isms, for example) and to compare the
genes in tumors with those in normal
tissues (to uncover subtle differences in
gene composition or number). One day
gene comparisons performed on DNA
chips could prove valuable in medical
practice as well. 

Carefully designed arrays could, for
instance, announce the precise cause of
infection in a patient whose flulike symp-
toms (such as aches, high fever and
breathing difficulty) do not point to one
clear culprit. A surface could be arrayed
with DNA representing genes that occur
only in selected disease-causing agents,
and a medical laboratory could extract
and label DNA from a sample of infect-
ed tissue (perhaps drawn from the per-
son’s nasal passages). Binding of the pa-
tient’s DNA to some gene sequence on the
chip would indicate which of the agents
was at fault. Similarly, chips now being
developed could signal that bioterrorists
have released specific types of anthrax or
other exotic germs into a community.

For better or worse, gene-detecting
microarrays could also identify an indi-
vidual’s genetic propensity to a host of
disorders. Most genetic differences in
people probably take the form of single
nucleotide polymorphisms, or SNPs (pro-
nounced “snips”), in which a single DNA
letter substitutes for another. A chip bear-
ing illness-linked gene variants could be
constructed to reveal an individual’s SNPs
and thus predict the person’s likelihood of
acquiring Alzheimer’s disease, diabetes,
specific cancers and so on. Those people
at greatest risk could then receive close

!  DNA microarrays, also known as DNA or gene chips, can track tens of thousands
of molecular reactions in parallel on a wafer smaller than a microscope slide. The
chips can be designed to detect specific genes or to measure gene activity in
tissue samples.

!  These properties are proving immensely valuable to cell biologists, to scientists
who study the roots of cancer and other complex diseases, and to drug researchers.
Microarrays are also under study as quick diagnostic and prognostic tools. 

!  Protein arrays, which have great promise as diagnostic devices and as aids to
biological research, are being developed as well.

!  The research and diagnostic information provided by DNA chips and protein
arrays should eventually help physicians provide highly individualized therapies. 

Overview/Microarrays
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1Construct or buy a microarray, 
or chip, containing single-stranded

DNA representing thousands of different
genes, each assigned to a specified spot
on the one-by-three-inch or smaller
device. Have every spot include thousands
to millions of copies of a DNA strand.

2Obtain two samples of liver cells;
apply the drug to one sample. Then,

from each sample, collect molecules 
of messenger RNA (mRNA)—the mobile
copies of genes and the templates for
protein synthesis in cells.

5Put the chip in a scanner. Have a 
computer calculate the ratio of red to

green at each spot (to quantify any
changes in gene activity induced by the
drug) and generate a color-coded readout.

6Determine whether any genes responded strongly to the 
drug in ways known to promote or reflect liver damage. 

Or compare the overall expression pattern produced by strong 
responders with the patterns produced when those genes react to
known liver toxins (right). Close similarity would indicate that the
new candidate was probably toxic as well. In the diagram, each box
represents a single gene’s response to a compound.

4Apply the labeled cDNAs to the chip. Binding occurs
when cDNA from a sample finds its complementary

sequence of bases on the chip (detail at right). Such
binding means that the gene represented by the chip DNA
was active, or expressed, in the sample.

mRNA

INACTIVE
GENES
ACTIVE
GENE

PROTEIN

mRNA

cDNA

mRNA

cDNA

DRUG

cDNA FROM   
UNTREATED 

CELLS

PAIR OF 
COMPLEMENTARY

BASES cDNA
FROM
TREATED
CELLSCHIP

DNA

SCANNER

NONTOXIC
SUBSTANCES

KNOWN 
LIVER TOXINS

NEW DRUG CANDIDATE

SEGMENT
OF A CHIP

SPOT CONTAINING COPIES
OF A SINGLE DNA MOLECULE

PART OF ONE
DNA STRAND 

TREATED CELL

MICROARRAY
(CHIP)

EXAMPLES 
OF REACTIONS

UNTREATED CELL

READOUT

HYPOTHETICAL PROFILES OF GENE ACTIVITY 
IN CELLS TREATED WITH VARIOUS COMPOUNDS

DNA 
BASES 

TO DETERMINE QUICKLY whether a potential new drug is likely to
harm the liver, a researcher could follow the steps below, asking

this question: Does the drug cause genes

(the blueprints for proteins) in liver cells to alter their activity in
ways that are known to cause or reflect liver damage? A “yes”
answer would be a sign of trouble.

HOW ARRAYS WORK

GENES

3Transcribe the mRNA into more stable
complementary DNA (cDNA) and add

fluorescent labels—green to cDNAs derived from
untreated cells, red to those from treated cells.
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monitoring, intensive preventive care and
early intervention. Whether these kinds of
tests would appeal to the public is an open
question, though; the downside of such
knowledge can be increased anxiety and
the potential for discrimination by em-
ployers and insurers. 

Other valuable information provided
by SNP chips would pose no threat to
people’s mental state, employability or in-
surability. The gene variants we possess
influence how our bodies process the
medicines we take, which in turn influ-
ences the effectiveness of the drugs and
the intensity of their side effects. Chips
that highlighted our unique genetic sen-
sitivities would help physicians choose the
drugs that work best and pose the fewest
dangers in each of us. SNP chips display-
ing genetic mutations that increase the ag-
gressiveness of tumors might also help
pathologists determine whether benign-
looking tumors are actually fiercer than
they seem based on microscopic analyses.
Both types of arrays are already being in-
vestigated for use in medical care.

Choice Expressions
AS EXCIT ING AS such applications
are, it is the other major use of arrays—
expression profiling—that has increas-
ingly captivated researchers over the
past few years. Laboratory workers pro-
duce these profiles by measuring the
amounts of different mRNAs in a tissue
sample. Generally, the more copies of
mRNA a cell makes, the more copies of
protein it will make, so the quantities of
the various mRNAs in a sample can in-
directly indicate the types and amounts
of proteins present. Proteins are often of
interest because they control and carry
out most activities in our bodies’ cells
and tissues. Chips that directly measure
protein levels are being developed [see
box on page 52], but constructing them
remains challenging.

By using the genome as a sensor pad
to detect activity changes in a cell’s vari-
ous genes, scientists can gain exquisitely
detailed “snapshots” of how a cell’s func-
tions have been altered by drugs or dis-
ease states. At times, knowing the over-
all on-off pattern of gene activity in a sam-

ple can actually be more useful than
knowing which particular genes turn on
and off in response to some influence. In
those cases, as will be seen, the pattern
serves as a shorthand “signature” reflect-
ing the molecular state of a sample under
some specific condition.

Expression profiling has proved in-
valuable on many fronts. Cell biologists
like it because knowledge of the proteins
that predominate after a tissue is exposed
to different conditions can provide insight
into how the tissue normally compensates
for disruptions and what goes wrong
when diseases develop. 

These scientists are also using expres-
sion arrays to learn the functions of genes
that have been discovered as a result of
the recent sequencing of nearly all the
DNA in the nucleus of the human cell.
Several techniques that do not involve mi-
croarrays can reveal the jobs performed
by newly discovered genes (or, more

properly, by the proteins those genes en-
code), but those approaches do not always
work well or quickly. In what has come
to be called the guilt-by-association ap-
plication, expression arrays can help fill in
the blanks, even in the absence of any pri-
or clues to a gene’s role in the body. 

This method derives from the aware-
ness that no gene is an island. If genes in
a tissue switch on and off together in re-
sponse to some influence—say, a drug, an
infection or an induced gene mutation—
workers can surmise that those like-act-
ing genes operate in the same regulatory
pathway; that is, the genes work togeth-
er or in series to induce a cellular re-
sponse. Investigators can reasonably
guess, then, that the jobs of any original-
ly mysterious genes in the group resemble
those of genes whose responsibilities are
already understood. 

Drug Discovery Tools
DRUG RESEARCHERS, too, take ad-
vantage of the guilt-by-association meth-
od—to discover proteins not previously
known to operate in biological path-
ways involved in diseases. Once those
proteins are found, they can be enlisted
as targets for the development of new
and better medicines.

In one example, Peter S. Linsley, our
colleague at Rosetta Inpharmatics, want-
ed to identify fresh targets for drugs that
might combat inflammatory illnesses, in
which the immune system perversely
damages parts of the body. He therefore
asked which genes in white blood cells of
the immune system increase and decrease
their protein production in parallel with
the gene for a protein called interleukin-2
(IL-2), which is strongly implicated in in-
flammatory disorders. 

He got the answer by producing ex-
pression profiles for white blood cells ex-
posed to various chemicals and then hav-
ing a computer run a sophisticated pat-
tern-matching program to pinpoint a set
of genes that consistently switched on or
off when the IL-2 gene was activated.
This set included a gene whose function
in the body had not been determined by
other means. At about the same time, in-
vestigators at the Pasteur Institute in
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AN ARRAY
OF COMPANIES

The following are just some of the
companies that sell or are developing
array-related products and services: 

DNA MICROARRAYS
Affymetrix, Santa Clara, Calif.

Agilent Technologies, Palo Alto, Calif.

Amersham Biosciences, Piscataway, N.J.
Axon Instruments, Union City, Calif.

BioDiscovery, Marina del Rey, Calif.

Clontech, Palo Alto, Calif.

Genomic Solutions, Ann Arbor, Mich.
Mergen, San Leandro, Calif.

Motorola Life Sciences, Northbrook, Ill.

Nanogen, San Diego, Calif.

Partek, St. Peters, Mo.

PerkinElmer, Boston, Mass.

Rosetta Inpharmatics, Kirkland, Wash.

Spotfire, Cambridge, Mass.

Virtek Vision International, Ontario, Canada

PROTEIN ARRAYS
Biacore International, Uppsala, Sweden

Biosite Diagnostics, San Diego, Calif.

Ciphergen, Fremont, Calif.

Large Scale Biology, Germantown, Md.
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Paris independently confirmed, with oth-
er methods, that this gene operates in the
IL-2 pathway. Together the findings sug-
gest that the protein encoded by the gene
could be a good target for anti-inflamma-
tory drugs. 

Pharmaceutical scientists use expres-
sion profiling in a different way: to pick
out—and eliminate—drug candidates that
are likely to produce unacceptable side ef-
fects. Workers who want to determine
whether a given compound could damage
the heart, for example, can compile a com-
pendium of expression profiles for heart
cells exposed to existing drugs and other
chemicals. If they also treat heart cells with
the drug candidate under study, they can
ask a computer to compare the resulting
signature with those in the compendium.
A signature matching those produced by
substances already known to disrupt car-
diac cells would raise a red flag.

A compendium of expression profiles
can also help explain why a drug pro-

duces particular side effects. A pressing
question today, for instance, is why pro-
tease inhibitors, which are lifesavers to
people infected with HIV (the virus that
causes AIDS), can lead to high cholesterol
and triglyceride levels in the blood,
strange redistributions of body fat, and
insulin resistance. Aware that the liver in-
fluences the production and breakdown
of lipids (the group that includes choles-
terol and triglycerides) and of lipid-con-
taining proteins, we and others at Roset-
ta, in collaboration with Roger G. Ulrich
and his team at Abbott Laboratories, de-

cided to see whether one protease in-
hibitor—ritonavir—produced some of its
side effects by acting on the liver.

With an array representing about
25,000 rat genes, we produced expression
profiles of rat liver tissue exposed to an as-
sortment of compounds that can be tox-
ic to the liver. After that, we grouped the
compounds according to similarities of
expression signatures across some 2,400
genes that responded strongly to those sub-
stances. Next we delivered ritonavir to rat
livers and compared the resulting expres-
sion profiles with those generated earlier. 
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STEPHEN H. FRIEND and ROLAND B. STOUGHTON are colleagues at Rosetta Inpharmatics
in Kirkland, Wash., which was founded in 1996 to develop molecular profiling methods in-
volving computers and DNA microarray technology. Merck & Co. acquired the company
last year. Friend is vice president of basic research at Merck and president of Rosetta. He
was a pediatric oncologist and molecular biologist at Harvard University before becoming
director of molecular pharmacology at the Fred Hutchinson Cancer Research Center and
co-founding Rosetta. Stoughton, who has a Ph.D. in physics, is senior vice president for in-
formatics at Rosetta. Before turning his attention to biotechnology, he worked on devel-
oping signal-processing and pattern-recognition tools for geophysics and astrophysics.
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WORK AT ROSETTA INPHARMATICS and the Netherlands Cancer
Institute suggests that microarrays can help distinguish cancer
patients with different prognoses. After determining the activity
(expression) levels of genes in small, localized breast tumors from
young women who were followed for at least five years after
surgery, the researchers found that the expression profiles—the
overall patterns of activity across a selection of genes in the

tumors—differed among the patients (left). A mathematical
analysis (right) then revealed that patients whose expression
profiles resembled a “poor prognosis” signature (the average
pattern in tumors that metastasized) were much more likely to
suffer a quick recurrence than were patients whose profiles
resembled a “good prognosis” signature (the typical pattern in
tumors that did not spread). If such results are confirmed by others,

doctors may one day be able to discern
which patients need the most intensive
therapy based in part on how closely their
expression profiles match a standard good
or poor prognosis profile. 
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by N. Leigh Anderson and Gunars Valkirs

LIKE DNA MICROARRAYS, protein-based chips—which array proteins
instead of DNA molecules on a small surface—can measure the
levels of proteins in tissues. In fact, they do the job more directly
and, some evidence says, more accurately. Protein arrays also
stand alone in being able to reveal which of thousands of proteins
in a tissue interact with one another.

All these properties make protein arrays quite appealing to
biological researchers. But the average person would most likely be
intrigued for a different reason. Hope is high that such chips will
dramatically expand the number of conditions that doctors can
diagnose quickly in their offices.

These devices should be very useful as diagnostic tools in part
because, unlike DNA microarrays, they can glean information from
blood plasma, which is easy to obtain. Most medical disorders—

from infectious diseases to heart or kidney damage—leave
identifiable traces in the blood, in the form of secreted or leaked
proteins. Moreover, in a single test, the arrays might measure many
or all of the proteins known to flag the presence of medical
problems. In contrast, standard diagnostic tests detect only one or
a few disease-specific proteins at a time.

The design of protein arrays resembles that of DNA chips.
Hundreds to thousands of distinct proteins sit (in millions of
copies) at specified spots in a grid on a wafer-thin plate. Binding of
proteins from a blood sample to proteins on a chip reveals the
nature and quantities of the sample proteins.

The kinds of proteins displayed on the chips can vary
depending on the questions being asked. But the chips closest to
commercialization (initially for use by researchers) rely on the

remarkable immune system molecules called antibodies—each of
which recognizes and binds to one specific protein or, more
precisely, to a specific segment of a protein. Some of these antibody
chips work by what is called the sandwich method: proteins
recognized by a chip get sandwiched between two different
antibodies, one that grabs the protein and a second that attaches a
fluorescent label to the snagged molecule (diagram below).

For antibody-based arrays to deliver fully on their potential for
advancing research and diagnostics, scientists will have to topple
at least two major impediments. One is the need for techniques that
mass-produce many different antibodies at once, and not just any
antibodies—those that bind tightly to one target, so as to reveal
even small quantities in a sample. This problem is already being
surmounted. The second obstacle is more fundamental. Medical
science has so far uncovered only dozens of the perhaps
thousands of proteins able to signal the presence or progress of a
disease. Until chipmakers know which proteins to look for, they will
be able to seek only a limited number of disease markers in a tissue
sample. Fortunately, droves of investigators are now hunting for
new disease-specific proteins. As advances in antibody
manufacture and protein discovery converge, they will yield a
second generation of protein arrays that could well transform both
medical research and clinical practice.

N. Leigh Anderson and Gunars Valkirs collaborate on protein array
research. Anderson is chief scientific officer at Large Scale Biology
Corporation in Germantown, Md. Valkirs is chief technology officer
at Biosite Diagnostics in San Diego, Calif.
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A PROTEIN CHIP IN ACTION

1Apply blood from a patient to a chip, or array,
consisting of antibodies assigned to specific

squares on a grid. Each square includes multiple
copies of an antibody able to bind to a specific
protein from one organism and so represents a
distinct disease-causing agent.

ANTIBODY CHIP

READOUTPROTEIN
FROM BLOOD

ANTHRAX
ANTIBODY

UNBOUND
ANTIBODIES

FLUORESCENTLY 
LABELED ANTIBODIES

ANTIBODY TO
AN ANTHRAX
PROTEIN

ANTIBODY TO
A SMALLPOX
PROTEIN 

ANTIBODY TO
AN INFLUENZA
PROTEIN

PROTEINS
IN BLOOD

DOT INDICATING
THAT THE 
PATIENT HAS 
ANTHRAX

SCANNER 

2Apply fluorescently labeled antibodies able 
to attach to a second site on the proteins

recognizable by the antibodies on the chip. If a
protein from the blood has bound to the chip, one 
of these fluorescent antibodies will bind to that
protein, enclosing it in an antibody “sandwich.”

3Feed the chip into a
scanner to determine

which organism is present
in the patient’s body. In this
case, the culprit is shown to
be a strain of anthrax.

DOCTORS MIGHT ONE DAY use a “sandwich assay” to identify
the infectious agent responsible for a patient’s illness. 
Is it a common flu bug or a new, deadly variety? Might the

tuberculosis bacterium be at fault—or even anthrax, smallpox
or Q fever microorganisms unleashed by bioterrorists?
Following the steps below would reveal the answer.

Protein Arrays–A New Option

LABELED
ANTIBODY

A PROTEIN ARRAY IN ACTION
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Ritonavir, we learned, leads to acti-
vation of genes that are usually quieted in
response to a well-known lipid-lowering
agent; ritonavir also decreases the pro-
duction of proteins that normally assem-
ble into proteosomes, structures that
break down no-longer-useful proteins,
including lipid-containing types. These
findings suggest that ritonavir raises lipid
levels in the liver—and hence in the
blood—in part by elevating the liver’s
synthesis of lipids and inhibiting its
breakdown of lipid-containing proteins.
Further study of exactly how ritonavir in-
teracts with the lipid- and proteosome-
producing pathways will provide ideas
for reducing its side effects.

Treatment Tailors
HAVING AN ENLARGED arsenal of
drugs, and more drugs with fewer side
effects, would be a great outcome of the
molecular profiling made possible by
DNA array studies. But many physi-
cians are hoping for an even better re-
sult: rapid diagnostic tools that would
divide patients with similar symptoms
into separate groups that would benefit
from different treatment plans. As the
lymphoma study mentioned at the start
of this article demonstrated, cancer spe-
cialists in particular desperately need
ways to identify patients who require
maximally aggressive treatment from
the beginning. 

Research into breast cancer by our
group at Rosetta, working with collabo-
rators from the Netherlands Cancer In-
stitute in Amsterdam, demonstrates how
expression arrays can help [see box on
page 49]. In this case, we wanted to invent
a test able to determine which young pa-
tients with early-stage breast cancer (with
no evidence of cancer in the lymph nodes)
need systemic drug therapy to prevent tu-
mor spread (metastasis) after surgery and
which do not. Although current guide-
lines recommend systemic treatment for
about 90 percent of these women, a good
many of them would probably avoid dis-
tant metastases even if they did not have
such treatment. Unfortunately, standard
tools cannot single out the women at
greatest risk.

We began by generating expression
profiles for tumors from close to 100
women under age 55 whose clinical course
had been followed for more than five
years after surgery. We initially worked
with a microarray representing 25,000
human genes. In the end, we found that
one particular signature produced by
about 70 genes strongly indicated that
metastases would soon appear. In addi-
tion, the opposite pattern was strongly
indicative of a good prognosis. Clearly,
some tumors are programmed to metas-
tasize before they grow to a size smaller
than half a dime, whereas other, larger
masses are programmed not to spread.

Our results have to be confirmed by
others before expression profiling can be-
come a routine part of breast cancer
workups. Within two years, many med-
ical centers will probably begin to test ex-
pression profiling as a guide to therapy,
not just for breast cancer but for other
types as well. Other diseases need im-
proved diagnostic tools, too. Expression
profiling might help distinguish sub-
groups of patients with such disorders as
asthma, diabetes or obesity who have spe-
cial treatment needs. Those applications
are now under study.

Before microarrays can live up to
their full potential as research and diag-
nostic tools, several roadblocks have to
be toppled. The chips, scanners and oth-
er accoutrements remain expensive (en-
gendering “array envy” in many under-
funded academics). Presumably, how-
ever, costs will drop with time. 

Yet even if prices fall, the technolo-
gies may prove infeasible, at least initial-
ly, for doctors’ offices or standard med-
ical laboratories. Few physicians or tech-

nicians have the equipment and the skill
to prepare tissue samples properly for use
with arrays. What is more, to diagnose,
say, liver disease based on changes in
gene expression in liver cells, a doctor
would ideally need to obtain tissue from
the liver. But that organ is not readily 
accessible. 

These problems loom large right now
but are probably surmountable with in-
genuity. At times, for instance, accessible
tissues might function as acceptable
stand-ins for inaccessible ones. More-
over, in some instances, microarrays
themselves may not have to be used; they
might provide the research information
needed for devising new diagnostic tests,
which can then take other forms.

As the operations of cells and the en-
tire body become better understood,
physicians will be able to make more pre-
cise diagnoses, to offer patients more so-
phisticated therapies (possibly including
gene therapies), and to tailor these inter-
ventions to an individual’s genetic back-
ground and current state of physiological
functioning. By the year 2020, health
maintenance organizations and their ilk
could conceivably keep in silico models
of the personal molecular states of their
subscribers—virtual simulations that
could be updated constantly with mi-
croarray and other data from doctor vis-
its and with new scientific information
about cell biology. Perhaps some sub-
scribers won’t like that idea and will for-
go a rate discount—and quite possibly
the best care—in return for a feeling of
privacy. Those who go along with the
program, though, will probably delay the
effects of aging more successfully and
lead healthier lives.
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The Chipping Forecast. Supplement to Nature Genetics, Vol. 21, pages 1–60; January 1999.
Genomics, Gene Expression and DNA Arrays. David Lockhart and Elizabeth Winzeler in Nature, 
Vol. 405, pages 827–836; June 15, 2000.
Experimental Annotation of the Human Genome using Microarray Technology. D. D. Shoemaker 
et al. in Nature, Vol. 409, pages 922–927; February 15, 2001.
Web sites listing links and publications on microarrays can be found at:
http://bioinformatics.phrma.org/microarrays.html
http://industry.ebi.ac.uk/~alan/MicroArray/
www.rii.com/publications/default.htm
http://ihome.cuhk.edu.hk/~b400559/2001j_mray.html
www.biologie.ens.fr/en/genetiqu/puces/links.html#news
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B
iological research has
been transformed in
recent years by substan-

tial advances in efficient data
accumulation. The transcription
output for every gene in a
genome now can be measured
in an afternoon; before it might
have taken years. However, the
recent advances in technology
have yet to be incorporated into
many biology classrooms (1).
Most undergraduates are taught
the same way their instructors
were taught, which seldom
reflects leading-edge research
practices. Training faculty in
the latest research methods is
not well supported on most
campuses (2). Worse yet, when students with
outdated undergraduate science experiences
become primary and secondary school teach-
ers, they condemn future generations to inade-
quate preparation for college. Today’s teachers
may also neglect the more quantitative aspects
and increased interdisciplinary involvement of
modern biology (3–5). Educational options that
reflect quantitative, interdisciplinary, and tech-
nological trends would provide students with
experiences that mirror today’s scholarship.

We have developed the Genome Consortium
for Active Teaching (GCAT) (6) to engage
undergraduates in genomics experimental
design and data analysis. GCAT faculty use
DNA microarrays to bring the excitement of
interdisciplinary research to students. Students

discover the importance of quantitative data
analysis, and the faculty are reinvigorated by the
opportunity to learn new technology. 

Origins of GCAT

GCAT was formed in 1999 with the intent of
bringing genomics into undergraduate curric-
ula, primarily through student research (7, 8).
Leading scientists donated materials and
equipment. Undergraduates designed and per-
formed experiments (see photograph above),
mailed their microarrays for scanning, and
then downloaded and analyzed their data (9). 

Two limiting factors, long-term scanner
access and a growing appetite for microarrays,
were addressed by grant support and further
donations from scientists (10–12). GCAT thus
grew in size and expertise. GCAT supports free
access to information and results through its
Web site (6) and a listserv of more than 200
subscribers.

GCAT projects replaced student laboratory
methods less prevalent in today’s research,
such as cloning and sequencing a gene and
Northern blotting.

Rapid Growth

GCAT is committed to enabling any institution
to adopt the use of microarrays in its under-
graduate curriculum at affordable prices. To
date, about 5000 undergraduates from 120

schools have used about 3400 microarrays. For
the 2005–2006 academic year, GCAT provided
more than 750 microarrays of nine plant, ani-
mal, and microbial species to students on 64
different campuses (6, 9). Tested protocols and
teaching aids are available from GCAT.
Continued grant support (11) covers the cost of
microarrays. 

Schools pay a nominal fee to GCAT for
microarrays and scanning. Students produce
and hybridize their own probes. Other than the
scanners, only standard molecular biology
equipment is required; the software is free.
The summer workshop costs, which are cur-
rently covered by grant support, are about
$2300 per participant.

The number of interested faculty continues
to grow. Although this enthusiasm is more a
measure of the importance of the microarray
method in molecular biology today than of
GCAT itself, it also serves as a testament to
GCAT’s user-friendly format.

GCAT faculty use the microarrays in vari-
ous ways. Some analyze existing data sets,
such as the yeast diauxic shift data (13) that
shows how yeast switch from one metabolic
route to another. Other faculty members offer
courses in which students collect their own
microarray data. Students have studied the
effects of environmental conditions on growth,
aging in yeast, chromatin structure, and the
cellular side effects of chemotherapy (6).
Microarrays offer a view of the connections
between different pathways in a cell in ways
that are hidden by many other methods. For
example, one student project looked for
expression changes in DNA replication
mutants and found cell wall assembly changes,
thus linking cytokinesis to mitosis. 

Dissemination Through Faculty

Development

GCAT has sponsored data generation (wet lab)
and data analysis (dry lab) workshops in vari-
ous settings (14). Wet and dry lab sessions
work best when they run 2 and 3 days, respec-
tively. Participants learn data analysis using
MAGIC Tool freeware (15). MAGIC Tool
works on any computer platform and is
designed to enhance student understanding of
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microarray and data analysis techniques.

In 2004, 35 faculty attended NSF-funded

data analysis or combined data generation and

analysis workshops at Georgetown University.

Assessments demonstrated that combined

training had a greater impact on undergraduate

courses than the analysis workshop alone. The

23 who participated in the combined work-

shops reported that 800 undergraduates subse-

quently used microarrays (~35 students per

teacher). In 2005, 64 faculty received microar-

rays. With similar rates, the microarrays might

reach as many as 2200 undergraduates.

Diversity

Historically black colleges and universities

(HBCUs) are often left behind the technology

curve. Two-thirds of attendees at the 2005

GCAT workshop at Morehouse College repre-

sented schools with substantial populations of

underrepresented students, including African

Americans, Native Americans, Hispanics, and

nontraditional students attending community

colleges. These populations are critical for

diversifying the population of scientists in the

United States. Faculty from biology, chemistry,

mathematics, and computer science have

attended GCAT workshops. GCAT activities

have attracted diverse populations of students:

21% of GCAT students are non-Caucasian, 64%

are female, 21% are majoring in a discipline

other than biology, and 44% are interested in

pursuing research careers in biology. GCAT

implements BIO2010 recommendations (1) by

teaching genomics through student research,

which excites students across disciplines and

ethnicities.

Keys to Success 

GCAT’s success is due to the people involved.

The early GCAT faculty took a collective leap

of faith by teaching genomics while simultane-

ously learning it themselves. Today’s GCAT

users can avoid much of the risk by taking a

workshop before beginning with microarray

analysis. GCAT faculty demonstrate their ded-

ication by voluntarily leading the consortium’s

efforts (16). Working as a community maxi-

mizes efficiency and produces a sense of

belonging to a larger effort that transcends a

single campus.

Faculty and students participate in assess-

ments of student comprehension, attitudes

toward research, and demographic information.

Anonymous, open-ended responses from stu-

dents have been very enthusiastic. Selected

comments from students include, “Microarray:

GREAT! I am amazed that we can do this! Such

an interesting concept yet simple enough to per-

form” and “What a powerful concept, microar-

rays. I greatly appreciated the opportunity to use

what is quite possibly the most important tool in

current analyses of gene expression.” 

Pre- and posttest results showed that GCAT

courses produced significant improvement (P

< 0.001) in students’ abilities to design experi-

ments and interpret data, areas often neglected

in traditional teaching laboratories (see table).

For example, students learned that whole-

pathway changes are more reliable than indi-

vidual gene changes. Students saw how spot

identification must be quantitatively guided

and how ratios are more informative than

intensities. When faculty explained their learn-

ing goals, how they use GCAT resources, and

the impact GCAT had on their ability to use

microarray technology, they overwhelmingly

indicated that they would not be able to do this

work without GCAT resources and will con-

tinue to participate in GCAT activities.

When participants of the 2004 workshops

were surveyed 1 year later, 80% (64% response

rate) rated their experiences with the highest

category on the survey. Sixty-one percent indi-

cated networking with other faculty was very

valuable. Faculty who had attended the com-

bined data generation and analysis workshop

altered an average of 1.6 courses to include the

new content, whereas those who had attended

only the data analysis workshop modified half

as many courses (average 0.86). Faculty

reported that their students showed an increased

interest in mathematics as a result of microarray

experiences. Faculty felt their teaching had

improved and their classes were more interest-

ing. One faculty member wrote, “… the presen-

tation of this subject makes [students] realize

and practice the close interaction biology/genet-

ics has with other fields like mathematics. They

enjoyed [being] introduced to a novel genetic

technique. They said they can understand better,

and can relate their class more to real

life…when they watch [news about] health and

advances in science.” Another faculty member

reported, “…many students have come back and

said they got jobs or were assigned or allowed to

do special projects in graduate schools because

of their experience with microarrays.”

Future Directions

GCAT wants to reach more faculty, especially

at HBCUs, tribal colleges, Hispanic-serving

institutions, community colleges, and small

institutions. Regional workshops are being

developed. GCAT is also working with high

school teachers to develop a classroom and

laboratory module on DNA microarrays (9).

Worrisome data suggest that students in the

United States are falling behind students in other

countries in the sciences. The National Ass-

essment of Educational Progress “national report

card” indicates only 18% of high school seniors

were proficient or advanced in science in 2000

(17). Our educational system must prepare both

future scientists and science-literate citizens for

success in a world of continuing scientific and

technological advances. The GCAT approach

encourages faculty who focus on undergraduate

teaching to become pioneers in incorporating the

technological innovations of molecular biology.

The GCAT community empowers faculty and

students alike to solve educational problems

(1–5) that seemed too big to tackle individually

but were too important to ignore.
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The Genome Consortium for Active Teaching (GCAT) facilitates the use of modern genomics
methods in undergraduate education. Initially focused on microarray technology, but with an
eye toward diversification, GCAT is a community working to improve the education of tomor-
row’s life science professionals. GCAT participants have access to affordable microarrays, mi-
croarray scanners, free software for data analysis, and faculty workshops. Microarrays provided
by GCAT have been used by 141 faculty on 134 campuses, including 21 faculty that serve large
numbers of underrepresented minority students. An estimated 9480 undergraduates a year will
have access to microarrays by 2009 as a direct result of GCAT faculty workshops. Gains for
students include significantly improved comprehension of topics in functional genomics and
increased interest in research. Faculty reported improved access to new technology and gains in
understanding thanks to their involvement with GCAT. GCAT’s network of supportive col-
leagues encourages faculty to explore genomics through student research and to learn a new and
complex method with their undergraduates. GCAT is meeting important goals of BIO2010 by
making research methods accessible to undergraduates, training faculty in genomics and bioin-
formatics, integrating mathematics into the biology curriculum, and increasing participation by
underrepresented minority students.

INTRODUCTION

Science and mathematics education plays a vital role in the
preparation of tomorrow’s scientists, teachers and parents,
doctors and patients, and scientifically literate citizens. For
years, many leaders in science and education have called for
reform (Project Kaleidoscope [PKAL], 2001; National Re-
search Council [NRC], 2003, 2005; Handelsman et al., 2004;
Steen, 2005). To help guide the reform process, the NRC
(2003) produced a report entitled BIO2010. The report con-

cludes that although advances in technology have caused a
dramatic transformation in biological research, undergrad-
uate biology education has not kept pace. Among the rem-
edies offered, four major recommendations are of critical
importance: 1) integrate mathematics and physical science
within cell and molecular biology courses; 2) redesign lab
courses to be interdisciplinary and based on research
projects, rather than canned labs with predictable outcomes;
3) provide faculty development in modern disciplines such
as genomics and bioinformatics; and 4) increase the number
of students from underrepresented minorities in the talent
pool from which future scientists will emerge. These four
recommendations present many challenges, but professional
societies, institutions, departments, and forward-thinking
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faculty throughout the country are working to address them
(Kumar, 2005; Campbell et al., 2006a; Kuldell, 2006; Pfund et
al., 2006). One of these efforts is the Genome Consortium for
Active Teaching (GCAT), the only laboratory-based model
curriculum mentioned in BIO2010. This report documents
the first 6 yr of GCAT activity and GCAT’s progress toward
accomplishing BIO2010 recommendations.

GCAT’s mission is to bring modern genomics to under-
graduate students, primarily through student research and
research-based laboratory curricula. Our primary focus has
been the use of DNA microarrays (sometimes referred to as
chips) as a means to address the four BIO2010 recommen-
dations outlined above (see Supplemental Material A for an
overview of microarray methodology). The annual opera-
tional cycle of GCAT is illustrated in Figure 1. In the spring,
GCAT solicits requests for DNA microarrays from partici-
pating faculty. Microarrays from 11 different species are
currently available to GCAT members. GCAT contracts for
the production of microarrays during the summer and dis-
tributes the microarrays in the fall. Faculty and students
design and perform their experiments and ship their hybrid-
ized chips overnight for scanning on a GCAT community
scanner purchased with support from the National Science
Foundation (NSF), or on backup scanners available at other
locations. GCAT then delivers tiff microarray data files to
the student investigators by File Transfer Protocol (FTP).
Students and faculty analyze their own data, and they have
access to data produced by all other GCAT members. Many
investigators use MAGIC Tool (Heyer et al., 2005), free soft-
ware provided by GCAT (Heyer and Campbell, 2004a).

GCAT members are free to pursue their own research or
research-style teaching without any limitations by GCAT.
The only requirements for participation are 1) only under-
graduates may use the microarrays; 2) faculty and students
must participate in assessment; and 3) all data and protocols
are open access for the GCAT community. Faculty training
in microarray laboratory protocols and data analysis meth-
ods is provided by workshops. NSF has funded three work-
shops to date, and it has recently awarded GCAT a new
grant to fund three more workshops during summers 2007,
2008, and 2009. New and veteran GCAT faculty alike appre-
ciate the collective expertise and support of the GCAT com-
munity, as evidenced by the high level of activity on the
GCAT-Listserv (GCAT-L) e-mail distribution list.

Based on assessment data from students and faculty,
GCAT is having a significant impact. Faculty report very
strong support for GCAT, and students report learning

gains and attitudinal changes as a result of their GCAT
experiences. Faculty self-reported substantial gains in their
scholarship and teaching activities as well as overall satis-
faction with GCAT. This report documents these successes
and identifies new ways in which GCAT can reach a wider
audience.

MATERIALS AND METHODS

DNA Microarray Resources
Currently, DNA microarrays are purchased with funds from
Howard Hughes Medical Institute (HHMI) awarded to Grinnell,
Pomona, Swarthmore, and Davidson. Chips were produced at nu-
merous academic labs. The cost to participating faculty is $50 for the
first microarray and $20 for each additional microarray per species
to cover the costs of shipping and scanning. For the first 3 yr, before
the advent of HHMI funding, academic labs donated the chips to
GCAT free of charge; this service provided crucial support neces-
sary for launching GCAT (from Patrick Brown at Stanford Univer-
sity [Stanford, CA] in year 1 and Leroy Hood at the Institute for
Systems Biology [Seattle, WA] in years 2 and 3).

MAGIC Tool software was developed using funds from Davidson
College, HHMI, and NSF. The software is written in Java, so it
works on all operating systems (i.e., Macintosh OS X, Windows, and
Linux), is freely available for downloading (Heyer and Campbell,
2004a), and is open source. Computers must have at least 512 MB of
RAM to run MAGIC Tool, but we recommend 1–2 GB of RAM for
optimal performance.

GCAT offered NSF-funded workshops during summers 2003,
2004, and 2005. In 2004, we offered one complete workshop (data
analysis and wet lab components) as well as some sessions for data
analysis only (Campbell et al., 2006a). The workshop participants
produced and analyzed two-color microarray data from the yeast
diauxic shift from anaerobic to aerobic metabolism. In that way, the
participants were able to obtain data directly comparable with a
ground-breaking published study (DeRisi et al., 1997). Professors
using variations on this experiment in their classes can augment
their student data by adding the public domain data before analysis
(Heyer and Campbell, 2004b). The two concurrent workshops in
2005 were 5 d long, including training in both data production and
data analysis (GCAT, 2005). NSF funding has now been obtained for
additional workshops in 2007, 2008, and 2009 to cover both aspects
of microarray work. All workshop participants receive materials to
take home, including a CD containing MAGIC Tool software, and
all raw and analyzed data produced at the workshop; the MAGIC
Tool user’s guide; a data analysis exercise for further practice;
guided activities in comparing and clustering gene expression pro-
files; a reading quiz on the DeRisi paper; laboratory protocols with
annotations; guidelines for faculty timing of weekly labs; and notes
on reagents and suppliers. The hands-on, collaborative nature of the
workshop ensures that participants have experienced the microar-

Figure 1. Outline of GCAT microarray dis-
tribution plan. Faculty who teach undergrad-
uates submit their requests for microarrays,
which are produced by several academic
labs. Students perform the experiments, then
the chips are scanned and data are posted to
an FTP server for students to analyze.

A. M. Campbell et al.
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ray process from beginning to end and have had a chance to learn
from mistakes in a supportive environment. Continued support for
faculty participants is provided after the workshops via e-mail
(GCAT, 2003) and by a helpdesk (staffed by NSF-funded under-
graduates), through 2009. In addition, some of us have led other less
comprehensive workshops at a variety of locations.

Surveys and Statistics
All student and faculty surveys were conducted online (Tonidandel,
2004). A pre- and postterm design was used for the student assess-
ment, whereas faculty completed an assessment only at the end of
the term. The preterm assessment (see Supplemental Material B)
was completed by students at the beginning of a semester. The
assessment asks students to respond with basic demographic infor-
mation and to complete an 11-item test of prior knowledge (see
Supplemental Material D). When the semester was over, students’
knowledge was again assessed along with their attitudes about
using the GCAT materials (see Supplemental Material C). The on-
line survey for faculty asked whether they used the GCAT materials
in their classes, and it assessed their attitudes regarding the GCAT
experience in their particular course. A mixed factorial analysis of
variance was used to evaluate statistical significance.

Of 52 professors identified by students as supervising the use of
GCAT materials at their home institutions, 43 professors completed
the faculty survey at the end of the program. Three faculty members
responded to the survey twice because they used GCAT materials in
both semesters of the 2005–2006 school year. In July 2004, GCAT
offered a series of NSF-sponsored hands-on workshops for faculty
interested in curricular innovations to include gene expression anal-
ysis via microarrays. Thirty-seven participants attended one of two
1.5-d dry lab workshops that introduced the microarray method
and covered data analysis by using public domain data. Participants
learned to work with the open-source MAGIC Tool spot-finding
and analysis software, along with other free packages, to analyze
public domain data sets in short projects. Twenty-three additional
participants continued with a 2.5-d hybridization workshop, which
involved hands-on preparation of fluorescently labeled probes for
yeast expression microarrays, their hybridization, data acquisition,
and data analysis by using the methods presented in the earlier
workshop. In June 2005, the GCAT team conducted a follow-up
evaluation to assess the degree to which the participants met their
goals. An e-mail invitation was sent to 39 faculty members in late
May 2005, requesting that they respond to a 10-item online survey
assessing participants’ retrospective evaluation of the workshops
and their use of the microarray tools during the 2004–2005 academic
year. Twenty-five people (64%) returned surveys by June 10; of
those, 10 participated in the wet and dry labs, 14 only in the dry
labs, and 1 was unable to attend but gathered and implemented the
workshop materials.

RESULTS

Origin and Growth of GCAT
The concept of GCAT was inspired by a 1999 presentation
given by Dr. Pat Brown of Stanford University. Two of us
(A.M.C. and M.L.L.) realized that this technology embodied
the power of genome-wide strategies and could be afford-
able for undergraduate institutions if we pooled our re-
sources. Brown agreed to provide us with 144 yeast DNA
microarrays. With this promise, we used the annual meet-
ings of PKAL and the Council on Undergraduate Research
(CUR) to recruit faculty who would be willing to take a
collective leap of faith and learn how to conduct microarray
experiments together but on different campuses. None of us
had ever performed such an experiment, but the procedure
was conceptually accessible and seemed relatively straight-

forward. Twenty-three faculty agreed to participate in the
inaugural year (2000–2001) of GCAT.

During GCAT’s first year, we realized that two potential
limitations might prevent widespread adoption of microar-
ray strategies: the cost of microarrays themselves and access
to a microarray scanner. A collaborative grant from NSF
allowed us to purchase a scanner in fall 2001 with additional
funding from Missouri Western State University, Pomona
College, and Davidson College. User fees of $20 per microar-
ray were collected to cover the expense of its service con-
tract. After the first year of demonstrated success using the
microarrays with undergraduates, other academic labs do-
nated additional microarrays. Dr. Hood, for example, do-
nated 400 yeast DNA microarrays over 2 yr. We used Mi-
chael Eisen’s ScanAlyze (Eisen, 2006) and commercial
GeneSpring software (Agilent Technology, Santa Clara, CA)
to analyze the data, because they were offered to GCAT
members free of charge for educational purposes.

Because GCAT relied on donated microarrrays, we were
hesitant to advertise in any formal manner. However, a
number of our institutions were invited to participate in the
HHMI competition for undergraduate institutions in 2003.
Working with guidance from Stephen Barkanic of HHMI,
the proposed budgets in applications from 24 GCAT mem-
ber institutions included funds to support direct costs of the
consortium. We hoped that 20% of those institutions would
be successful, allowing extended stable support. In fall 2004,
Pomona, Grinnell, Swarthmore, and Davidson were each
awarded 4-yr educational grants from HHMI, which in-
cluded funding for GCAT. With this funding, we could
purchase microarrays to meet the growing demand of the
consortium. For yeast microarrays, we purchased our own
whole-genome oligonucleotide sets and contracted with the
microarray core facility at Washington University in St.
Louis, MO, to produce microarrays for GCAT. Membership
in GCAT has continued to grow in two dimensions (Figure
2), beginning with exclusively yeast microarrays in 2001 to
11 different types of microarrays in 2006. In the first 7 yr,
GCAT provided �5000 DNA microarrays for use by approx-
imately 6000 undergraduates.

Figure 2. GCAT growth over seven years. GCAT has expanded
the number of microarrays distributed (right Y-axis) and the num-
ber of faculty (left Y-axis) participating each year.
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As GCAT grew, we recognized two new limiting factors:
faculty training and appropriate software. Very few GCAT
faculty had formal training with microarray techniques or
analysis of the data. This need was expressed very clearly by
the numerous attendees at an American Society for Micro-
biology (AMC) symposium chaired by AMC in 2002 (Camp-
bell, 2002). In response, a core group decided to develop
student-friendly lab protocols and to offer workshops for
faculty training. Free software programs such as ScanAlyze
and Cluster (Eisen, 2006) were restricted to the Windows
platform, whereas many commercial packages were cum-
bersome and prohibitively expensive. Therefore, one of us
(L.J.H.) worked with several undergraduates to write
MAGIC Tool (Heyer et al., 2005) for data analysis. MAGIC
Tool is written in Java, and so runs on all major computer
platforms; it is freely available, and is open source (Heyer
and Campbell, 2004a).

From the outset, GCAT has been guided by a few simple
principles:

1. bring genomic methods into the undergraduate curricu-
lum, primarily through student research;

2. share resources to make experiments affordable;
3. be as inclusive as possible so all schools can participate;
4. create a clearinghouse of information for faculty;
5. provide all data freely to anyone for pedagogical use;
6. develop a distributed community to help each other trou-

ble-shoot and develop curriculum;
7. make assessment a fundamental requirement for partici-

pation; and
8. encourage participants to set their own educational and

research goals.

By following these principles, GCAT has reached many
campuses, some of which have been overlooked in na-
tional educational reform efforts (e.g., small campuses
and community colleges), have student populations who
are underrepresented in science, or both (Figure 3). Mi-
croarrays provided by GCAT have been used by 141
faculty on 134 campuses in 36 states as well as two uni-
versities in Canada and one university in Australia. Of the
134 U.S. campuses, 21 (16%) serve large numbers of stu-
dents from underrepresented minorities (1 in Hawaii, 3
that serve a mixture of ethnic groups, 7 historically black
colleges or universities, and 10 Hispanic-serving institu-
tions; U.S. Department of Education, 2006). A majority of
the GCAT campuses are small, 4-yr, liberal arts colleges,
but GCAT membership includes faculty from three com-
munity colleges as well as large universities such as the
University of Georgia (25,000 undergraduates), California
State University at Sacramento (23,000 undergraduates),
University of Louisville (22,000 undergraduates), Boston
College (9000 undergraduates), University of Southern
Maine (8600 undergraduates), and Georgetown Univer-
sity (7000 undergraduates). In addition to direct support
for these schools, GCAT has provided student-friendly
protocols, curriculum, and pedagogical advice to research
powerhouses such as Massachusetts Institute of Technol-
ogy (MIT, Cambridge, MA) and University of California
at San Diego as they began using microarrays in under-
graduate laboratories. GCAT helps faculty overcome
some of the common barriers to the introduction of new

technologies into undergraduate curricula, and it offers
faculty the freedom to adapt the materials to their own
research interests and institutions.

Student Outcomes
Students who work with DNA microarrays tend to be
juniors (29%) or seniors (57%), and either biology (74%) or
chemistry (14%) majors. Men and women are equally
represented and 18% are from underrepresented ethnic
groups. Nearly 60% want to pursue medical careers and
33% want to pursue a Ph.D. in cell/molecular biology.
Based on these career goals, it is not surprising that most
students had already completed introductory biology
(93%), organic chemistry (77%), calculus (72%) and first-
year physics (67%). Only 5% had completed a course in
genomics or bioinformatics before working with the
GCAT materials.

Nearly 80% of the students were able to progress
through the experimental procedure far enough to have
their microarrays scanned, although only 54% reported
that they obtained usable data. Of faculty surveyed, 70%
reported that some of their students obtained usable data.
Among these 34 faculty, the average success rate (scanned
microarrays with usable data) of their students was 81%,
with 22 faculty reporting that 100% of their students
produced usable data. Therefore, the overall student suc-
cess rate as reported by faculty is estimated to be �56%
(0.70 � 0.81). By comparison, 212 (76%) of the 277 mi-
croarrays scanned at Davidson College between June 17,
2005, and July 28, 2006, produced usable results. This is a
very impressive success rate for a method that early skep-
tics thought was impossible for undergraduates to use.
Notably, some faculty whose students at first obtained no
usable data are now getting very good results due to
improved methods for RNA isolation and cDNA produc-
tion. As faculty determine the best way to produce labeled

Figure 3. Map of GCAT-participating schools. GCAT is composed
of 141 faculty on 134 campuses in 36 states, including two univer-
sities in Canada and one in Australia (colored arrow), with nodes
serving as hyperlinks to the appropriate departments (GCAT,
2006b). This screen shot is from an interactive map that allows
viewers to see the geographical distribution of users for each type of
microarray. Contact information for GCAT faculty is available and
organized by academic year.
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probes for their system, the success rate should continue
to climb above 70%.

Knowledge Gains. Eleven questions to test knowledge were
presented in identical form on the two surveys (pre- and
postsurveys) taken many weeks apart; in total, 409 students
responded to both sets of questions (see Supplemental Ma-
terial B–D for the 2 surveys and 11 knowledge questions).
Students were instructed to answer questions without the
use of notes or consultation with friends. Those questions
presented hypothetical scenarios pertaining to gene expres-
sion and microarray experimentation techniques. The ques-
tions were not focused on details or specific facts, but they
were designed to be very challenging and to emphasize
problem solving and data analysis. With the exception of the
final question, correct response rates for each question in the
presurvey were below 50%. On average, students were not
knowledgeable about microarray experimentation relating
to either DNA or RNA at the outset of their GCAT experi-
ences. The average percentage of correct responses across all
test items before GCAT training was 30.5%. Item 5 was
particularly difficult for student participants; only 5.0% of
students answered it correctly on the preprogram survey.
Correct response rates for each item and students’ knowl-
edge gains are found in Table 1.

Knowledge scores improved substantially after the GCAT
program; the average percentage of correct responses on the
post-GCAT survey was 47.1%. Correct responses for each
item increased on average by 16.5%. All gains were statisti-
cally significant, with the exception of item 6. Questions 1
and 4 showed particularly large improvements, and both
specifically pertain to microarray experimentation. Knowl-
edge gains and final performance were lowest on items 5
(10.8% correct) and 6 (21.1% correct); the subject matter for
these two questions relates to gene expression ratios and
probability.

Although the pre- and postsurveys showed significant
gains for students who worked with GCAT materials, it
would be interesting to know whether similar gains were
possible for students who learned about microarrays in a
lecture-only course. Fortunately, one GCAT faculty member
volunteered to have her genomics lecture course of 18 stu-
dents take the pre- and postsurveys as a control group.

Lectures and reading assignments were congruent with
other classes that used GCAT materials, but the control class
did not conduct laboratory experiments. Students in the
control group gained an average of 3.5% correct responses at
the end of the semester, and this increase was not statisti-
cally significant. Conversely, the remaining students, who
implemented GCAT materials in their laboratories (n � 377),
showed significant increases on knowledge questions (p �
0.01); the average student increased by 16.4%. This improve-
ment is roughly equivalent to two additional correct an-
swers on the 11-item quiz. There was significant correlation
with time spent working with the microarrays and use of
GCAT materials (p � 0.05). Students who conducted mi-
croarray experiments improved significantly in knowledge
assessments over the course of a semester, whereas students
who did not participate in laboratory activities did not show
significant knowledge gains over the same amount of time.

Attitude Changes. After their GCAT experiences, students
rated their change in interest and understanding of genom-
ics, biology, and research on a 7-point scale where 1 is
decreased a lot and 7 is increased a lot. On average, students’
interest and understanding of all three areas increased over
the course of the GCAT program (Table 2). Students also
rated the effectiveness of various GCAT activities on a
7-point scale, where 1 is not effective at all and 7 is highly
effective. Table 3 presents the percentage of students who
rated these activities at least 4.00 and at least 5.00 on the
7-point scale. The average effectiveness value students as-
signed to all of the activities was 5.20, and mean scores on
individual activities ranged from 5.06 to 5.32. On average,
students did not judge any activity to be drastically more or

Table 1. Scores on 11 knowledge questions for pre- and postsurveysa (n � 409)

Question Subject matter Correct pre-GCAT (%) Correct post-GCAT (%) Increase (%)

1 Microarray experimental error–dye bias 23.1 59.3 36.2
2 Microarrary experimental error–gradient 32.7 43.2 10.5
3 Microarray negative controls 28.9 39.2 10.3
4 Microarray experimental design 33.9 72.1 38.2
5 Gene expression ratios using a graph 5.0 10.8 5.8
6 Gene expression–probability 20.9 21.1 0.2
7 Gene expression–gene clusters 30.0 52.3 22.3
8 Gene expression–regulatory cascade 28.4 43.3 14.9
9 Gene expression–gene circuit graphs 37.9 49.7 11.8

10 Interpreting microarray results 40.0 59.0 19.0
11 Diagnosis with microarrays 54.9 67.4 12.5

a Performance increased significantly (p � 0.05) on all questions except item 6.

Table 2. Student attitude change (on a 7-point scale where 1 is
decreased a lot and 7 is increased a lot) in interest and understand-
ing of subject areas (n � 409)

Area Mean SD

Genomics 5.5 1.1
Biology 5.5 1.1
Research 5.4 1.2
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less effective than others. All average ratings are above 5.0
on the 7-point scale, indicating that students judged all of
the activities to be effective.

Faculty Outcomes

2005–2006 Academic Year Responses. Faculty estimated the
number of weeks allocated for each of the activities per-
formed by their students (i.e., isolate mRNA, make cDNA
probes, make total genomic DNA probes, hybridize probes
to microarray, analyze students’ own data, analyze data
from public sources, and (students) design their own exper-
iments). We evaluated both the time devoted to each activity
(e.g., 2.6 wk) and the frequency with which faculty members
reported a particular activity (e.g., 80% of the faculty may
have reported doing a particular activity) but not the fre-
quency with which each activity was done at each institution
(i.e., 80% does not mean an activity was done 80% of the
time at an institution). Hybridizing probes to a microarray
(80.0%) was the activity reported most often by the faculty,
whereas only a small percentage asked that students make
total genomic DNA probes (12.2%). Excluding the lecture-
only control group, 90.6% of the professors reported that
their students performed at least three of the GCAT activi-
ties during the semester, using an average of 1.8 wk per task.
Students were given the most time to make total genomic
DNA probes (2.6 wk) and to analyze their own data (2.5 wk).
The least amount of time was allotted for making cDNA
probes and analyzing public domain data (1.12 wk for each).
Professors were asked how they measured student perfor-
mance when they used GCAT materials (Table 4). The most
common assessment tool used by GCAT professors was
informal feedback (62.2%), but term papers and lab reports
were nearly as popular (51.1%). Other methods for assess-
ment included tests (42.2%) and poster presentations
(33.3%). About 24% of the professors reported “other” tech-
niques (e.g., three faculty used lab notebooks, whereas sin-
gle responses were recorded for honors thesis, constant dis-
cussion with the student, constructive participation in
course discussion [graded daily], laboratory work, and quiz-
zes). A small number of faculty (8.8%) assessed students
through preparation of a manuscript for publication.

Faculty received funding to support use of GCAT re-
sources from a variety of sources, with most support coming

from departmental funds (89.0%). Institutional and extramu-
ral funds each supported 20% of the participating faculty.
Only 4.4% of professors indicated that they received no
funding for using the materials provided by GCAT. Al-
though most professors (61.7%) did not feel that their im-
plementation of GCAT materials was limited by computer
resources, 38.3% indicated that they experienced such limi-
tations.

GCAT faculty rated their agreement with statements de-
scribing their experiences with GCAT (Table 5). Most faculty
responded that they would not have access to microarray
technology without GCAT, and they reported a positive
overall GCAT experience. Faculty participants generally
agreed that the online protocols and e-mail distribution list
(GCAT-L) were helpful. Working with DNA microarrays is
inherently an interdisciplinary effort, as illustrated by two
unsolicited faculty comments. A biology faculty member
commented about GCAT,

“You have awakened parts of my brain that have been
dormant since my last stats course. The only reason I
have gone over the manual so carefully is that this is
my first time teaching microarrays, or even using
them, for that matter. GCAT has been remarkably
helpful to me. In fact I don’t think I would have
undertaken this new module in my lab course without
the tools GCAT makes available.”

Table 3. Student responses (on a 7-point scale where 1 is not effective at all and 7 is highly effective) measuring satisfaction with
methods used in lab

% of students who rated the activity with at least 4.00 or
5.00

GCAT activity Mean � 4.00 � 5.00 Na

Practicing data analysis before I began analyzing my own data 5.25 93.6 67.1 313
Isolating RNA or genomic DNA to produce probe 5.32 94.1 70.0 323
Producing the fluorescently labeled probe 5.22 94.4 68.9 306
Hybridizing the probe with the spotted DNA 5.20 92.8 70.1 334
Designing my own experiment 5.13 87.3 64.3 244
Analyzing data from public domain source 5.22 94.7 65.8 325
Reading papers that used DNA microarrays 5.06 88.9 62.4 343

a Number of students who did not rate the activity �not applicable.�

Table 4. Faculty assessment methods from 2005 to 2006 academic
year

Assessment method
Professors who used each

assessment method (%)

Test 42.2
Term paper/lab report 51.1
Poster presentation 33.3
Oral presentation 26.6
Manuscript for publication 8.8
Course evaluation 33.3
Informal feedback 62.2
Other 24.4
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Conversely, a mathematics professor remarked (with iden-
tifiers removed for anonymity),

“I am working with a student who is trying to do
some serious data analysis on [Dr. X’s] chips – we are
having great fun learning and thinking about how to
understand and analyze all of this data – we are going
back to basics – and have already found some inter-
esting things – we are excited that our mathematical
results seem to be synching up with [Dr. X’s] biolog-
ical results/insights. I hope we are not the first on
board with the GCAT project that are primarily data
analysis oriented folks – but I daresay, if we are, we
won’t be the last! This project provides a great area of
study for undergrad students interested in data anal-
ysis but not necessarily the actually bench work (but
of course they need to understand what happened on
the bench to understand the data!). Also, it is a fan-
tastic opportunity for math/stats and bio majors (and
professors!) to interact! Hmmm. . . looks like your
project may be expanding to us lab phobic (but data
loving!) types!”

These quotes illustrate the power of providing stimulating
opportunities to faculty who otherwise would not venture
out of their comfort zones.

2004 GCAT Workshop Outcomes. Immediately following
the 2004 workshop, all faculty indicated the workshop was
very good. One year later, 67% of the respondents said that,
overall, the workshop they attended was excellent (80% of
the wet lab attendees and 57% of the dry lab attendees). The
remainder reported the workshop was very good (29%) or
good (4%); none reported that it was fair or poor. When
asked to select the aspects of the workshops that, in retro-
spect, were most valuable in preparing for and teaching
during the 2004–2005 academic year, participants consis-
tently indicated that the handouts and notebook were criti-
cal (70%). Additionally, 48% found the protocols for data
analysis valuable, and 39% found the protocols for hybrid-
ization valuable. In open-ended responses, two participants
wrote that gaining confidence to use the tools was impor-
tant, and one wrote that doing the data analysis in the
workshop was useful. Importantly, 61% of the respondents
indicated that networking with instructors and other partic-
ipants via GCAT was among the most important aspects of

the workshop. This finding is consistent with the 2004 on-
site evaluation, which indicated that participants felt the
collaborative nature of the workshops was among the most
valuable aspect of the workshop.

Upon completion of the workshop, respondents to the
2004 evaluation indicated that they intended to alter existing
courses to include data analysis with MAGIC Tool, expected
to add a wet lab in upper-division courses, and that they
planned to emphasize microarrays in several courses across
the curriculum. The 2005 survey asked the 2004 workshop
participants whether these courses had in fact been altered
to accommodate what they had learned (Table 6). Nineteen
of the 24 respondents (79%) who attended the workshop
used the materials in at least one course (including indepen-
dent study) during the 2004–2005 academic year, as did the
one instructor who could not attend the workshop but re-
ceived the written materials. The others indicated that they
were still in the curricular planning phases or had commit-
ted to using the materials in a class scheduled for the 2005–
2006 academic year. Of the 20 respondents who reported
using the workshop-supplied information during
2004–2005, 18 said they met at least one goal that they had
proposed before taking the workshop. Many participants
used the materials in more than one class; two participants
indicated they altered three courses to use what they learned
in the workshop. Two respondents added a dry lab, and two
added a wet lab. The average number of courses modified
by wet lab workshop attendees was 1.6 (SD � 0.84); the
average number of modified courses for dry lab attendees
was 0.86 (SD � 0.77). These values differ significantly (t �
�2.2, p � 0.05), suggesting that attendance at the wet lab
workshop may yield better preparation or more confidence
for using the microarray tools.

The GCAT workshop materials were used in 10 different
types of courses. MAGIC Tool was used in genetics classes
by 25% of respondents. The software was used by other
respondents in Biochemistry (2), Introductory Biology (2),
Bioinformatics (2), Molecular Biology (1), Advanced Molec-
ular/Cell Biology (1), Data Analysis (1), Biotechnology (1),
Cell Physiology (1), and Microbiology (1). Twenty-five per-
cent of the respondents indicated that they used the microar-
ray tools for independent research with students. Interest-
ingly, only one faculty member developed a wet lab
component but did not use MAGIC Tool software, which
reveals the intense need for free software that is student

Table 5. Faculty responses from 2005 to 2006 academic year by
using a 5-point scale, where 1 is strongly disagree and 5 is strongly
agree

Mean SD

I would have access to microarray technology
without GCAT. 1.5 0.75

The online protocols available on the GCAT
website were useful. 4.4 0.69

The GCAT-Listserv was helpful. 4.2 1.0
The collection of other GCAT members as a

support network was a significant factor in
launching microarray technology on my
campus. 4.2 0.79

Overall, I had a positive experience using GCAT. 4.6 0.60
I would use GCAT again in the future. 4.7 0.63

Table 6. Faculty goals prior to 2004 workshop and percentage who
accomplished these goals

Proposed change
% Participants

(n � 20)

Proposed to use in specific lectures and used
the material in those lectures 35 (7)

Proposed to use in specific labs and used the
material in those labs 60 (12)

Proposed to use in research and did so 15 (3)
Proposed to use in specific lectures but used

the materials in other ways 20 (4)
Proposed to use in specific labs but used the

materials in other ways 15 (3)
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friendly. An additional benefit faculty identified was their
increased collaboration as a result of the workshop (Table 7).
This result addresses important recommendations in the
BIO2010 report that call for increasing faculty development
opportunities and building communities with a shared com-
mitment to educational reform.

Twenty faculty reported that a total of approximately 800
students participated in a course or in research that used
workshop materials in some way. Individual faculty reports
ranged from engagement of 2–220 students, with an average
of 39.5 and median of 20 per faculty member. Sixteen stu-
dents were involved in advanced tutorials or independent
research using the microarray tools; most had successful
experiences. Five students made presentations at their re-
spective colleges or universities or at the regional Sigma Xi
conference; one received a grant for an honors proposal
using the microarray technique. Four students were con-
ducting research for the first time. However, one respondent
indicated that his two students had a less than optimal
experience because the data were not readable and the term
allowed no time for replication.

Open-ended faculty comments included the following:

“. . . the presentation of this subject makes [students]
realize and practice the close interaction biology/ge-
netics has with other fields like mathematics. They
enjoyed [being] introduced to a novel genetic tech-
nique. They said they can understand better and re-
lated more [of] their class to real life, like when they
watch health news and advances in science.”

“Because [this course] was an absolutely introductory
exposure to using microarrays for faculty and stu-
dents, exposure was limited. I anticipate a strong up-
tick in activity in the next year as new molecular
faculty become involved.”

“Many students have come back and said they got
jobs or were assigned or allowed to do special projects
in graduate schools because of their experience with
microarrays. Many others come back and tell how
helpful what they learned in the class was with job
experiences or graduate school and how they feel
ahead of many others attending classes.”

“I think students were extremely excited to have ex-
posure to microarray technology and data analysis.”

“The students said this made them think about what
they were doing more critically and it made the whole
process seem less ‘magical.’”

“I didn’t have quite as much time as I had hoped for
data analysis. I found that it took longer than I antic-
ipated for students to grasp the analysis.”

“. . . none of our arrays worked. Unfortunately, I think
a lot of it was lost on the students. Negative results
tend to confuse them, they are not yet appreciative of
the fact that experiments don’t always work.”

DISCUSSION
Students
The main purpose of GCAT has been to use DNA microar-
rays as a vehicle to bring genomics into the undergraduate
curriculum. The NRC recommends undergraduate curricula
should blend mathematics with cell/molecular biology and
laboratory experiences that are research-based and interdis-
ciplinary (NRC, 2003, 2005). GCAT provides ready access to
an exciting area of interdisciplinary research that is moving
into clinical applications—DNA microarrays. Analyzing real
microarray data requires students to understand the com-
plexities of genomics and use quantitative methods such as
bioinformatics to understand their data and statistical analysis
to interpret their results. Students enjoy working with cutting-
edge techniques, and they see the value of an integrative ap-
proach to science. GCAT helps teachers provide students with
valuable skills and train them to think in ways that are critical
to the future success of research scientists (Hartwell et al., 1999).

Based on the knowledge surveys, students have made
significant gains in many areas (Table 1). Although we pro-
vide here some preliminary evidence that GCAT offers
learning benefits over a control group, the conclusions one
can draw from these data are limited by the small size of the
control group. As a result, we are expanding our evaluation
efforts to include more control classes from a variety of
institutions in an attempt to determine more concretely the
learning gains associated with the wet lab portion of GCAT.
The high percentage of microarrays with usable data is a
tribute to the student-friendly protocols and faculty support
network. Students attending a wide range of institutions
have been able to perform microarray experiments, because
the costs of microarrays are low and the software is free.
Only 25% of GCAT faculty have access to extramural fund-
ing of some kind (including HHMI educational grants),
which explains why affordability is so critical to GCAT’s
success. Furthermore, student interest and understanding in
genomics and appreciation of research increased (Table 2) in
part because they felt the methods were beneficial (Table 3).

Based on student learning gains, GCAT faculty and stu-
dents should devote more time to gene expression ratios and
probability, because these topics are essential to understand-
ing gene expression data. Student weakness in these topics
reflects the traditional lack of effective integration of math-
ematics in biology programs. Working with microarrays
creates an opportunity for faculty to integrate math and
biology, as recommended in BIO2010. The next area of con-
cern is to make sure students fully understand the experi-
mental method and how to troubleshoot. Fewer than half of
student participants were able to answer items 2, 3, 8, and 9

Table 7. Faculty-perceived collaborative benefits from attending
2004 GCAT workshop

Collaborations after returning to home campus
% Participants

(n � 23)

Talked with GCAT faculty via GCAT-L 48
Collaborated with faculty at my home institution

to assist in curriculum/course development 48
Worked with teaching assistants 9
Discussed material at department/faculty

meetings 48
Shared with colleagues at other institutions 9
Other 13
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correctly after their GCAT experience, and all of these items
pertain to microarray experimentation methods. Although
significant gains were observed for these questions, there is
room for additional improvement. Professors might want to
emphasize a wider range of microarray techniques in their
future implementations of GCAT activities.

Faculty
Faculty development is an ongoing concern for every cam-
pus, and BIO2010 recognized this as a critical issue (NRC,
2003). GCAT provides an easy way for faculty to learn a new
method with their students. The GCAT protocols and
MAGIC Tool software minimize the risk to faculty of trying
this method for the first time. Often, faculty do not have
colleagues on campus who can help them. GCAT’s network
of supportive colleagues encourages faculty to learn a new
and intimidating method. The workshops are efficient and
effective, based on the number of courses altered and the
number of students affected after 1 yr. NSF has provided
funding for three more summers of workshops, projected to
involve a total of 120 faculty. If we multiply the number of
faculty trained each year (40) by the number of students
affected based on the 2004 workshop (39.5), then by 2009,
�9480 undergraduates will have been provided with access
to microarrays as a direct result of future GCAT workshops.
This number does not include the current number of GCAT
faculty (141 to date) and all the students they will reach.
Furthermore, because many GCAT faculty teach at minori-
ty-serving institutions, another BIO2010 goal is being sup-
ported—diversification of future researchers.

No program is perfect, and there are areas where GCAT
could improve. Because faculty indicated that interactions
with other GCAT members were very significant factors when
they launched microarray technology on their own campuses,
additional networking resources such as online curriculum
workshops or electronic communication could potentially en-
hance GCAT faculty training and success rates. Workshop
participants from 2004 indicated that some additional informa-
tion or materials would have facilitated increased use of mi-
croarray data analysis in the curriculum. Four primary sugges-
tions were clear from open-ended comments:

1. Help with course planning. Faculty particularly sought
additional instructor guidelines (perhaps lesson plans), espe-
cially focused on how best to explain and present the experi-
mental design, and, critically, requested information regarding
the prep time needed to incorporate the materials into the
course with confidence. The need for a course guide for teach-
ing the analysis component was noted by several respondents.
Response: In the future, GCAT may sponsor curriculum develop-
ment workshops, but currently there is no funding for this. At this
time, the best option for new faculty is comparing notes with other
GCAT faculty on GCAT-L.

2. Help with analysis. Faculty requested comparisons with
other software packages and more instruction on related
analysis programs (e.g., ScanAlyze).
Response: The workshops do help with data analysis but due to the
high costs of commercial software, we support only free programs.
ScanAlyze is free, but does not work on Macintosh, and does only part
of the data analysis, whereas MAGIC Tool does the full analysis in a
single program. MAGIC Tool was designed to be student-friendly

and to help users understand the consequences of various actions,
such as background subtraction. Most other programs were designed
for researchers and do not readily lend themselves to instructional
applications. Faculty may decide to use other programs, and GCAT
does not place any constraints on the software programs its members
use. The former company Silicon Genetics provided free access to
GeneSpring, a Windows-compatible analysis program, to GCAT
members. Agilent Technologies is continuing to provide free access to
GeneSpring during research-style classes, after reviewing the labora-
tory syllabus, but no longer permits publications to use their graphics,
even undergraduate research projects.

3. Documentation. Suggestions included developing help
files, distributing slide sets (PowerPoint) of the lectures, creat-
ing a detailed handout for MAGIC Tool explaining why certain
tasks are performed, and publishing a troubleshooting guide.
Response: NSF has provided funds for a helpdesk staffed by stu-
dents as well as for the production of tutorials that contain movies
to teach users how to use MAGIC Tool. We hope this will address
the needs of many faculty and students.

4. Networking. Faculty want contact with others using sim-
ilar protocols.
Response: In addition to electronic community building via
GCAT-L, GCAT faculty attend many professional workshops and
may seek each other out during these meetings. As stated in
number 1 above, GCAT may organize curriculum workshops, but
currently does not have funding to do this.

No matter how much the GCAT community offers to
faculty, some problems are institutional and cannot be
solved by GCAT. Faculty challenges include the following:

• Faculty may not be able to predict their teaching assign-
ments into future years, so long-term planning for curric-
ular change can be difficult.

• Although many faculty have a great desire to use these
new materials, they require extensive time to prepare. In
some cases, admirable goals cannot be met within the
existing time constraints.

• The need for unusually large amounts of computer RAM
must be considered in advance; some labs are not ade-
quately equipped.

• Faculty found it hard to imagine and develop productive
lesson plans to incorporate the tools.

Future Directions for GCAT
By focusing on microarrays as a tool for understanding gene
expression and functional genomics, GCAT has accom-
plished many of the BIO2010 goals; but not all faculty want
to work with microarrays. Exploration of other routes may
help faculty bring genomics into their courses while remain-
ing consistent with our goals. Two additional efforts are
underway currently. The first is a collaboration with Dr.
Sarah Elgin at Washington University who is working with
college faculty on actual, authentic DNA sequencing
projects. She has collected resources and protocols so that
undergraduates can learn to finish and annotate genome
sequences (Elgin, 2005). The other project is a collaboration
with Randy Rettburg and Drew Endy at MIT, working in the
field of synthetic biology (Rettburg and Endy, 2006). Syn-
thetic biology blends mathematics, computer science, and
engineering with molecular and cell biology (SyntheticBiol-
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ogy, 2006). Furthermore, to extend the pipeline of students
who can work in genomics as undergraduates, we have
developed microarray wet lab simulations and paper activ-
ities for high school students (GCAT, 2006a; Campbell et al.,
2006b). These tools allow teachers to use hands-on learning
activities to blend mathematics with biology in a way that
students enjoy and retain.

Accessing Materials
Any faculty member may join GCAT and there is no fee for
joining. All you need to do is sign up for GCAT-L to receive
e-mail announcements (http://www.bio.davidson.edu/
projects/GCAT/GCAT-L.html), including the free summer
workshops for faculty (http://www.bio.davidson.edu/
projects/GCAT/gcat.html#workshops). Only undergradu-
ates can use the DNA microarrays, though anyone can an-
alyze data with MAGIC Tool or use any of the other
resources on the GCAT or MAGIC Tool websites. The mi-
croarray simulation kit is available for anyone (http://
www.bio.davidson.edu/projects/GCAT/HSChips/HSchips.
html). GCAT invites faculty who teach undergraduates to
participate in synthetic biology (http://www.bio.davidson.
edu/projects/GCAT/Synthetic/synthetic.html) or to contact
The International Genetically Engineered Machine (iGEM)
leaders directly (http://parts2.mit.edu/wiki/index.php/
Main_Page).
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Teachers’ group brings genomics revolution to minority colleges
When the human genome sequence was released 
in 1999, it meant two things to Edison Fowlks, 
a biology professor at Hampton University in 
Virginia.

First, genomics technologies were about to 
revolutionize science. And second, students and 
faculty of so-called minority-serving institutions 
such as Hampton, a historically black college, 
needed to be part of the revolution.

But where were such institutions going to 
come up with the funds to train faculty in the 
new technologies—much less buy microarrays 
and the scanners needed to read them?

In 2004, Fowlks found an answer when he 
met fellow biologist A. Malcolm Campbell, 
who since 2000 had been organizing a program 
called Genome Consortium for Active Teaching 
(GCAT) for faculty at small undergraduate 
institutions. Campbell is himself a researcher at 
Davidson College in North Carolina, a liberal 
arts college with 1,700 students.

Campbell had convinced genomics pioneer 
Pat Brown of Stanford University to donate 
microarrays, which Campbell then mailed to 
dozens of other professors. These professors 
taught students how to do experiments with 
the chips and then mailed them back to him. 
Campbell then read data from the chips using a 
single scanner and sent it back to the professors, 
who analyzed it with free software written by 
one of Campbell’s colleagues. The only charges 
for chip users were shipping fees and the cost 
of the reagents for their experiments—no more 
than $500.

Fowlks saw the power of the model 
immediately. “GCAT essentially democratizes 
genomics,” he says. “It allows a consortium of 
small colleges and universities to do informatics 

and genomics without 
all the powerful 
equipment that major 
universities have.”

Fowlks joined 
forces with Campbell 
to expand GCAT’s 
reach. The pair wrote 
a grant, awarded by the 
US National Science 
Foundation, to support 
a GCAT workshop at 
Morehouse College in 
Atlanta in 2005. The 
agency has committed 
to funding yearly 
workshops through 
2009; the most recent 
of these, held this July, 
trained 40 teachers.

The workshops are open to anyone who 
teaches undergraduates, with an emphasis on 
faculty teaching minority students. Since 2003, 
the Howard Hughes Medical Institute has spent 
$100,000 each year to buy microchips for the 
program. This year, GCAT distributed 1,200 
chips to 72 teachers at institutions across the 
nation, from Alaska to Hawaii and Puerto Rico.

This fulfills not only Fowlks’s and Campbell’s 
goals, but also those set out by numerous reports 
on American competitiveness, such as a 2005 
National Academies manifesto that calls for the 
nation to train more minority scientists and 
engineers.

“The National Academies and so many 
other groups have said we need to increase 
diversity in science, and I don’t know how that’s 
supposed to happen if we don’t reach out to 

schools that serve large numbers of minorities,” 
Campbell says.

GCAT is already showing results. Scientists 
such as Consuelo Alvarez at Longwood 
University in Farmville, Virginia, are publishing 
genomics research, and students such as 
Hampton University senior Sabriya Rosemond 
are getting swept into the genomics revolution.

Rosemond, one of Fowlks’s former students, 
has worked in biology labs for the past two 
summers and is determined to go into science 
after she graduates next year. “I want to make 
science a little browner, like Dr. Campbell and 
Dr. Fowlks are doing,” she says. For the GCAT 
leaders, that’s an even more satisfying benchmark 
than the growing list of grants and papers that 
they are helping to produce every year.

Erika Check, San Francisco

The kids received their wages in gourmet gummy bears and M&Ms. 
On a good night, the team would make 200 swabs.

The researchers used the swabs to follow weekly changes in vaginal 
pH in 311 women over two years. “It’s a poor woman’s way of doing 
it,” says John Thorp, a gynecologist at the University of North 
Carolina, who was not involved in the project. “I think that taking 
the [vaginal] speculum out of it greatly diminishes the cost.”

Sullivan and her colleagues used to joke about patenting the swab. 
But it’s too late. In July, New York–based company Vagisil launched 
its own over-the-counter version, a spatula-shaped ‘wand’ that 
measures pH.

The study ended in 2003, and the handmade pH swabs are no 
longer being used. But the researchers plan to revive their approach 
if necessary: a tube of pH strips and a box of tongue depressors are 
still cheaper than the $15 tab for a Vagisil kit.

Cassandra Willyard, New York

Bring on the revolution: Using donated microarrays and a single scan-
ner, minority faculty and students are jumping into genomics research.
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Simple solution: Women and children made swabs needed to test vaginal 
pH for a clinical study in Uganda.
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Exploring the Metabolic and Genetic Control of
Gene Expression on a Genomic Scale

Joseph L. DeRisi, Vishwanath R. Iyer, Patrick O. Brown*

DNA microarrays containing virtually every gene of Saccharomyces cerevisiae were used
to carry out a comprehensive investigation of the temporal program of gene expression
accompanying the metabolic shift from fermentation to respiration. The expression
profiles observed for genes with known metabolic functions pointed to features of the
metabolic reprogramming that occur during the diauxic shift, and the expression patterns
of many previously uncharacterized genes provided clues to their possible functions. The
same DNA microarrays were also used to identify genes whose expression was affected
by deletion of the transcriptional co-repressor TUP1 or overexpression of the transcrip-
tional activator YAP1. These results demonstrate the feasibility and utility of this ap-
proach to genomewide exploration of gene expression patterns.

The complete sequences of nearly a dozen
microbial genomes are known, and in the
next several years we expect to know the
complete genome sequences of several
metazoans, including the human genome.
Defining the role of each gene in these
genomes will be a formidable task, and un-
derstanding how the genome functions as a
whole in the complex natural history of a
living organism presents an even greater
challenge.

Knowing when and where a gene is
expressed often provides a strong clue as to
its biological role. Conversely, the pattern
of genes expressed in a cell can provide
detailed information about its state. Al-
though regulation of protein abundance in
a cell is by no means accomplished solely
by regulation of mRNA, virtually all dif-
ferences in cell type or state are correlated
with changes in the mRNA levels of many
genes. This is fortuitous because the only
specific reagent required to measure the
abundance of the mRNA for a specific
gene is a cDNA sequence. DNA microar-
rays, consisting of thousands of individual
gene sequences printed in a high-density
array on a glass microscope slide (1, 2),
provide a practical and economical tool
for studying gene expression on a very
large scale (3–6).

Saccharomyces cerevisiae is an especially

favorable organism in which to conduct a
systematic investigation of gene expression.
The genes are easy to recognize in the ge-
nome sequence, cis regulatory elements are
generally compact and close to the tran-
scription units, much is already known
about its genetic regulatory mechanisms,
and a powerful set of tools is available for its
analysis.

A recurring cycle in the natural history
of yeast involves a shift from anaerobic
(fermentation) to aerobic (respiration) me-
tabolism. Inoculation of yeast into a medi-
um rich in sugar is followed by rapid growth
fueled by fermentation, with the production
of ethanol. When the fermentable sugar is
exhausted, the yeast cells turn to ethanol as
a carbon source for aerobic growth. This
switch from anaerobic growth to aerobic
respiration upon depletion of glucose, re-
ferred to as the diauxic shift, is correlated
with widespread changes in the expression
of genes involved in fundamental cellular
processes such as carbon metabolism, pro-
tein synthesis, and carbohydrate storage
(7). We used DNA microarrays to charac-
terize the changes in gene expression that
take place during this process for nearly the
entire genome, and to investigate the ge-
netic circuitry that regulates and executes
this program.

Yeast open reading frames (ORFs) were
amplified by the polymerase chain reaction
(PCR), with a commercially available set of
primer pairs (8). DNA microarrays, con-
taining approximately 6400 distinct DNA
sequences, were printed onto glass slides by

using a simple robotic printing device (9).
Cells from an exponentially growing culture
of yeast were inoculated into fresh medium
and grown at 30°C for 21 hours. After an
initial 9 hours of growth, samples were har-
vested at seven successive 2-hour intervals,
and mRNA was isolated (10). Fluorescently
labeled cDNA was prepared by reverse tran-
scription in the presence of Cy3(green)-
or Cy5(red)-labeled deoxyuridine triphos-
phate (dUTP) (11) and then hybridized to
the microarrays (12). To maximize the re-
liability with which changes in expression
levels could be discerned, we labeled cDNA
prepared from cells at each successive time
point with Cy5, then mixed it with a Cy3-
labeled “reference” cDNA sample prepared
from cells harvested at the first interval
after inoculation. In this experimental de-
sign, the relative fluorescence intensity
measured for the Cy3 and Cy5 fluors at
each array element provides a reliable mea-
sure of the relative abundance of the corre-
sponding mRNA in the two cell popula-
tions (Fig. 1). Data from the series of seven
samples (Fig. 2), consisting of more than
43,000 expression-ratio measurements,
were organized into a database to facilitate
efficient exploration and analysis of the
results. This database is publicly available
on the Internet (13).

During exponential growth in glucose-
rich medium, the global pattern of gene
expression was remarkably stable. Indeed,
when gene expression patterns between the
first two cell samples (harvested at a 2-hour
interval) were compared, mRNA levels dif-
fered by a factor of 2 or more for only 19
genes (0.3%), and the largest of these dif-
ferences was only 2.7-fold (14). However, as
glucose was progressively depleted from the
growth media during the course of the ex-
periment, a marked change was seen in the
global pattern of gene expression. mRNA
levels for approximately 710 genes were
induced by a factor of at least 2, and the
mRNA levels for approximately 1030 genes
declined by a factor of at least 2. Messenger
RNA levels for 183 genes increased by a
factor of at least 4, and mRNA levels for
203 genes diminished by a factor of at least
4. About half of these differentially ex-
pressed genes have no currently recognized
function and are not yet named. Indeed,
more than 400 of the differentially ex-
pressed genes have no apparent homology
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to any gene whose function is known (15).
The responses of these previously unchar-
acterized genes to the diauxic shift therefore
provides the first small clue to their possible
roles.

The global view of changes in expres-
sion of genes with known functions pro-
vides a vivid picture of the way in which
the cell adapts to a changing environ-
ment. Figure 3 shows a portion of the yeast
metabolic pathways involved in carbon
and energy metabolism. Mapping the
changes we observed in the mRNAs en-
coding each enzyme onto this framework
allowed us to infer the redirection in the
flow of metabolites through this system.
We observed large inductions of the genes
coding for the enzymes aldehyde dehydro-
genase (ALD2) and acetyl–coenzyme
A(CoA) synthase (ACS1), which func-
tion together to convert the products of
alcohol dehydrogenase into acetyl-CoA,
which in turn is used to fuel the tricarbox-
ylic acid (TCA) cycle and the glyoxylate
cycle. The concomitant shutdown of tran-
scription of the genes encoding pyruvate
decarboxylase and induction of pyruvate
carboxylase rechannels pyruvate away
from acetaldehyde, and instead to oxalac-
etate, where it can serve to supply the
TCA cycle and gluconeogenesis. Induc-
tion of the pivotal genes PCK1, encoding
phosphoenolpyruvate carboxykinase, and
FBP1, encoding fructose 1,6-biphos-
phatase, switches the directions of two key
irreversible steps in glycolysis, reversing
the flow of metabolites along the revers-
ible steps of the glycolytic pathway toward
the essential biosynthetic precursor, glu-
cose-6-phosphate. Induction of the genes
coding for the trehalose synthase and gly-
cogen synthase complexes promotes chan-
neling of glucose-6-phosphate into these
carbohydrate storage pathways.

Just as the changes in expression of
genes encoding pivotal enzymes can pro-
vide insight into metabolic reprogram-
ming, the behavior of large groups of func-
tionally related genes can provide a broad
view of the systematic way in which the
yeast cell adapts to a changing environ-
ment (Fig. 4). Several classes of genes,
such as cytochrome c–related genes and
those involved in the TCA/glyoxylate cy-
cle and carbohydrate storage, were coordi-
nately induced by glucose exhaustion. In
contrast, genes devoted to protein synthe-
sis, including ribosomal proteins, tRNA
synthetases, and translation, elongation,
and initiation factors, exhibited a coordi-
nated decrease in expression. More than
95% of ribosomal genes showed at least
twofold decreases in expression during the
diauxic shift (Fig. 4) (13). A noteworthy
and illuminating exception was that the

genes encoding mitochondrial ribosomal
genes were generally induced rather than
repressed after glucose limitation, high-
lighting the requirement for mitchondrial
biogenesis (13). As more is learned about
the functions of every gene in the yeast
genome, the ability to gain insight into a
cell’s response to a changing environment
through its global gene expression patterns
will become increasingly powerful.

Several distinct temporal patterns of ex-
pression could be recognized, and sets of
genes could be grouped on the basis of the
similarities in their expression patterns. The
characterized members of each of these
groups also shared important similarities in
their functions. Moreover, in most cases,
common regulatory mechanisms could be
inferred for sets of genes with similar expres-
sion profiles. For example, seven genes
showed a late induction profile, with mRNA
levels increasing by more than ninefold at

the last timepoint but less than threefold at
the preceding timepoint (Fig. 5B). All of
these genes were known to be glucose-re-
pressed, and five of the seven were previously
noted to share a common upstream activat-
ing sequence (UAS), the carbon source re-
sponse element (CSRE) (16–20). A search
in the promoter regions of the remaining two
genes, ACR1 and IDP2, revealed that
ACR1, a gene essential for ACS1 activity,
also possessed a consensus CSRE motif, but
interestingly, IDP2 did not. A search of the
entire yeast genome sequence for the con-
sensus CSRE motif revealed only four addi-
tional candidate genes, none of which
showed a similar induction.

Examples from additional groups of
genes that shared expression profiles are
illustrated in Fig. 5, C through F. The
sequences upstream of the named genes in
Fig. 5C all contain stress response ele-
ments (STRE), and with the exception

Fig. 1. Yeast genome microarray. The actual size of the microarray is 18 mm by 18 mm. The
microarray was printed as described (9). This image was obtained with the same fluorescent
scanning confocal microscope used to collect all the data we report (49). A fluorescently labeled
cDNA probe was prepared from mRNA isolated from cells harvested shortly after inoculation (culture
density of ,5 3 106 cells/ml and media glucose level of 19 g/liter) by reverse transcription in the
presence of Cy3-dUTP. Similarly, a second probe was prepared from mRNA isolated from cells taken
from the same culture 9.5 hours later (culture density of ;2 3 108 cells/ml, with a glucose level of
,0.2 g/liter) by reverse transcription in the presence of Cy5-dUTP. In this image, hybridization of the
Cy3-dUTP–labeled cDNA (that is, mRNA expression at the initial timepoint) is represented as a green
signal, and hybridization of Cy5-dUTP–labeled cDNA (that is, mRNA expression at 9.5 hours) is
represented as a red signal. Thus, genes induced or repressed after the diauxic shift appear in this
image as red and green spots, respectively. Genes expressed at roughly equal levels before and after
the diauxic shift appear in this image as yellow spots.
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of HSP42, have previously been shown to
be controlled at least in part by these
elements (21–24). Inspection of the se-
quences upstream of HSP42 and the two
uncharacterized genes shown in Fig. 5C,
YKL026c, a hypothetical protein with
similarity to glutathione peroxidase, and
YGR043c, a putative transaldolase, re-
vealed that each of these genes also pos-
sess repeated upstream copies of the stress-
responsive CCCCT motif. Of the 13 ad-
ditional genes in the yeast genome that
shared this expression profile [including
HSP30, ALD2, OM45, and 10 uncharac-
terized ORFs (25)], nine contained one or
more recognizable STRE sites in their up-
stream regions.

The heterotrimeric transcriptional acti-
vator complex HAP2,3,4 has been shown
to be responsible for induction of several
genes important for respiration (26–28).
This complex binds a degenerate consensus
sequence known as the CCAAT box (26).
Computer analysis, using the consensus se-
quence TNRYTGGB (29), has suggested
that a large number of genes involved in
respiration may be specific targets of
HAP2,3,4 (30). Indeed, a putative
HAP2,3,4 binding site could be found in
the sequences upstream of each of the seven
cytochrome c–related genes that showed
the greatest magnitude of induction (Fig.
5D). Of 12 additional cytochrome c–related
genes that were induced, HAP2,3,4 binding
sites were present in all but one. Signifi-
cantly, we found that transcription of
HAP4 itself was induced nearly ninefold
concomitant with the diauxic shift.

Control of ribosomal protein biogenesis
is mainly exerted at the transcriptional
level, through the presence of a common
upstream-activating element (UASrpg)
that is recognized by the Rap1 DNA-bind-
ing protein (31, 32). The expression pro-
files of seven ribosomal proteins are shown
in Fig. 5F. A search of the sequences
upstream of all seven genes revealed con-
sensus Rap1-binding motifs (33). It has
been suggested that declining Rap1 levels
in the cell during starvation may be re-
sponsible for the decline in ribosomal pro-
tein gene expression (34). Indeed, we ob-
served that the abundance of RAP1
mRNA diminished by 4.4-fold, at about
the time of glucose exhaustion.

Of the 149 genes that encode known or
putative transcription factors, only two,
HAP4 and SIP4, were induced by a factor of
more than threefold at the diauxic shift.
SIP4 encodes a DNA-binding transcrip-
tional activator that has been shown to
interact with Snf1, the “master regulator” of
glucose repression (35). The eightfold in-
duction of SIP4 upon depletion of glucose
strongly suggests a role in the induction of

downstream genes at the diauxic shift.
Although most of the transcriptional

responses that we observed were not pre-
viously known, the responses of many
genes during the diauxic shift have been
described. Comparison of the results we
obtained by DNA microarray hybridiza-
tion with previously reported results there-
fore provided a strong test of the sensitiv-
ity and accuracy of this approach. The
expression patterns we observed for previ-
ously characterized genes showed almost
perfect concordance with previously pub-
lished results (36). Moreover, the differ-
ential expression measurements obtained
by DNA microarray hybridization were re-
producible in duplicate experiments. For
example, the remarkable changes in gene
expression between cells harvested imme-
diately after inoculation and immediately
after the diauxic shift (the first and sixth
intervals in this time series) were mea-
sured in duplicate, independent DNA mi-
croarray hybridizations. The correlation
coefficient for two complete sets of expres-
sion ratio measurements was 0.87, and for
more than 95% of the genes, the expres-

sion ratios measured in these duplicate
experiments differed by less than a factor
of 2. However, in a few cases, there were
discrepancies between our results and pre-
vious results, pointing to technical limita-
tions that will need to be addressed as
DNA microarray technology advances
(37, 38). Despite the noted exceptions,
the high concordance between the results
we obtained in these experiments and
those of previous studies provides confi-
dence in the reliability and thoroughness
of the survey.

The changes in gene expression during
this diauxic shift are complex and involve
integration of many kinds of information
about the nutritional and metabolic state
of the cell. The large number of genes
whose expression is altered and the diver-
sity of temporal expression profiles ob-
served in this experiment highlight the
challenge of understanding the underlying
regulatory mechanisms. One approach to
defining the contributions of individual
regulatory genes to a complex program of
this kind is to use DNA microarrays to
identify genes whose expression is affected
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synthase

TEF4

STL1

CIT2
YCR104
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YHR085

Growth OD 0.14 Growth OD 0.46 Growth OD 0.8

Growth OD 1.8

Growth OD 7.3

Growth OD 3.7 Growth OD 6.9

∆ tup1 YAP1 +++

Fig. 2. The section of the ar-
ray indicated by the gray box
in Fig. 1 is shown for each of
the experiments described
here. Representative genes
are labeled. In each of the ar-
rays used to analyze gene
expression during the diauxic
shift, red spots represent
genes that were induced rel-
ative to the initial timepoint,
and green spots represent
genes that were repressed
relative to the initial timepoint.
In the arrays used to analyze
the effects of the tup1D mu-
tation and YAP1 overexpres-
sion, red spots represent
genes whose expression was
increased, and green spots
represent genes whose ex-
pression was decreased by
the genetic modification. Note
that distinct sets of genes are
induced and repressed in the
different experiments. The
complete images of each of
these arrays can be viewed on
the Internet (13). Cell density
as measured by optical densi-
ty (OD) at 600 nm was used to
measure the growth of the
culture.
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by mutations in each putative regulatory
gene. As a test of this strategy, we analyzed
the genomewide changes in gene expression
that result from deletion of the TUP1 gene.
Transcriptional repression of many genes by
glucose requires the DNA-binding repressor

Mig1 and is mediated by recruiting the tran-
scriptional co-repressors Tup1 and Cyc8/
Ssn6 (39). Tup1 has also been implicated in
repression of oxygen-regulated, mating-type–
specific, and DNA-damage–inducible genes
(40).

Wild-type yeast cells and cells bearing
a deletion of the TUP1 gene (tup1D) were
grown in parallel cultures in rich medium
containing glucose as the carbon source.
Messenger RNA was isolated from expo-
nentially growing cells from the two pop-
ulations and used to prepare cDNA la-
beled with Cy3 (green) and Cy5 (red),
respectively (11). The labeled probes were
mixed and simultaneously hybridized to
the microarray. Red spots on the microar-
ray therefore represented genes whose
transcription was induced in the tup1D
strain, and thus presumably repressed by
Tup1 (41). A representative section of the
microarray (Fig. 2, bottom middle panel)
illustrates that the genes whose expression
was affected by the tup1D mutation, were,
in general, distinct from those induced
upon glucose exhaustion [complete images
of all the arrays shown in Fig. 2 are avail-
able on the Internet (13)]. Nevertheless,
34 (10%) of the genes that were induced
by a factor of at least 2 after the diauxic
shift were similarly induced by deletion of
TUP1, suggesting that these genes may be
subject to TUP1-mediated repression by
glucose. For example, SUC2, the gene en-
coding invertase, and all five hexose trans-
porter genes that were induced during the
course of the diauxic shift were similarly
induced, in duplicate experiments, by the
deletion of TUP1.

The set of genes affected by Tup1 in this
experiment also included a-glucosidases,
the mating-type–specific genes MFA1 and
MFA2, and the DNA damage–inducible
RNR2 and RNR4, as well as genes involved
in flocculation and many genes of unknown
function. The hybridization signal corre-
sponding to expression of TUP1 itself was
also severely reduced because of the (in-
complete) deletion of the transcription unit
in the tup1D strain, providing a positive
control in the experiment (42).

Many of the transcriptional targets of
Tup1 fell into sets of genes with related
biochemical functions. For instance, al-
though only about 3% of all yeast genes
appeared to be TUP1-repressed by a factor
of more than 2 in duplicate experiments
under these conditions, 6 of the 13 genes
that have been implicated in flocculation
(15) showed a reproducible increase in
expression of at least twofold when TUP1
was deleted. Another group of related
genes that appeared to be subject to TUP1
repression encodes the serine-rich cell
wall mannoproteins, such as Tip1 and
Tir1/Srp1 which are induced by cold
shock and other stresses (43), and similar,
serine-poor proteins, the seripauperins
(44). Messenger RNA levels for 23 of the
26 genes in this group were reproducibly
elevated by at least 2.5-fold in the tup1D
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Fig. 3. Metabolic reprogramming inferred from global analysis of changes in gene expression. Only key
metabolic intermediates are identified. The yeast genes encoding the enzymes that catalyze each step
in this metabolic circuit are identified by name in the boxes. The genes encoding succinyl-CoA synthase
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strain, and 18 of these genes were induced
by more than sevenfold when TUP1 was
deleted. In contrast, none of 83 genes that
could be classified as putative regulators of
the cell division cycle were induced more
than twofold by deletion of TUP1. Thus,
despite the diversity of the regulatory sys-
tems that employ Tup1, most of the genes
that it regulates under these conditions
fall into a limited number of distinct func-
tional classes.

Because the microarray allows us to
monitor expression of nearly every gene in
yeast, we can, in principle, use this ap-
proach to identify all the transcriptional
targets of a regulatory protein like Tup1. It
is important to note, however, that in any
single experiment of this kind we can only
recognize those target genes that are nor-
mally repressed (or induced) under the
conditions of the experiment. For in-
stance, the experiment described here an-
alyzed a MAT a strain in which MFA1
and MFA2, the genes encoding the a-
factor mating pheromone precursor, are
normally repressed. In the isogenic tup1D
strain, these genes were inappropriately
expressed, reflecting the role that Tup1
plays in their repression. Had we instead
carried out this experiment with a MATA
strain (in which expression of MFA1 and
MFA2 is not repressed), it would not have
been possible to conclude anything re-
garding the role of Tup1 in the repression
of these genes. Conversely, we cannot dis-
tinguish indirect effects of the chronic
absence of Tup1 in the mutant strain from
effects directly attributable to its partici-
pation in repressing the transcription of a
gene.

Another simple route to modulating the
activity of a regulatory factor is to overex-
press the gene that encodes it. YAP1 en-
codes a DNA-binding transcription factor
belonging to the b-zip class of DNA-bind-
ing proteins. Overexpression of YAP1 in
yeast confers increased resistance to hydro-
gen peroxide, o-phenanthroline, heavy
metals, and osmotic stress (45). We ana-
lyzed differential gene expression between a
wild-type strain bearing a control plasmid
and a strain with a plasmid expressing YAP1
under the control of the strong GAL1-10
promoter, both grown in galactose (that is,
a condition that induces YAP1 overexpres-
sion). Complementary DNA from the con-
trol and YAP1 overexpressing strains, la-
beled with Cy3 and Cy5, respectively, was
prepared from mRNA isolated from the two
strains and hybridized to the microarray.
Thus, red spots on the array represent genes
that were induced in the strain overexpress-
ing YAP1.

Of the 17 genes whose mRNA levels
increased by more than threefold when

YAP1 was overexpressed in this way, five
bear homology to aryl-alcohol oxidoreduc-
tases (Fig. 2 and Table 1). An additional
four of the genes in this set also belong to
the general class of dehydrogenases/oxi-
doreductases. Very little is known about
the role of aryl-alcohol oxidoreductases in
S. cerevisiae, but these enzymes have been
isolated from ligninolytic fungi, in which
they participate in coupled redox reac-
tions, oxidizing aromatic, and aliphatic
unsaturated alcohols to aldehydes with the
production of hydrogen peroxide (46, 47).
The fact that a remarkable fraction of the
targets identified in this experiment be-
long to the same small, functional group of
oxidoreductases suggests that these genes

might play an important protective role
during oxidative stress. Transcription of a
small number of genes was reduced in the
strain overexpressing Yap1. Interestingly,
many of these genes encode sugar per-
meases or enzymes involved in inositol
metabolism.

We searched for Yap1-binding sites
(TTACTAA or TGACTAA) in the se-
quences upstream of the target genes we
identified (48). About two-thirds of the
genes that were induced by more than
threefold upon Yap1 overexpression had
one or more binding sites within 600 bases
upstream of the start codon (Table 1), sug-
gesting that they are directly regulated by
Yap1. The absence of canonical Yap1-bind-
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The total number of
genes in each group was
as follows: ribosomal
proteins, 112; translation
elongation and initiation
factors, 25; tRNA synthetases (excluding mitochondial synthetases), 17; glycogen and trehalose syn-
thesis and degradation, 15; cytochrome c oxidase and reductase proteins, 19; and TCA- and glyoxy-
late-cycle enzymes, 24.

Table 1. Genes induced by YAP1 overexpression. This list includes all the genes for which mRNA levels
increased by more than twofold upon YAP1 overexpression in both of two duplicate experiments, and
for which the average increase in mRNA level in the two experiments was greater than threefold (50).
Positions of the canonical Yap1 binding sites upstream of the start codon, when present, and the
average fold-increase in mRNA levels measured in the two experiments are indicated.

ORF Distance of Yap1
site from ATG Gene Description Fold-

increase

YNL331C Putative aryl-alcohol reductase 12.9
YKL071W 162–222 (5 sites) Similarity to bacterial csgA protein 10.4
YML007W YAP1 Transcriptional activator involved in

oxidative stress response
9.8

YFL056C 223, 242 Homology to aryl-alcohol
dehydrogenases

9.0

YLL060C 98 Putative glutathione transferase 7.4
YOL165C 266 Putative aryl-alcohol dehydrogenase

(NADP1)
7.0

YCR107W Putative aryl-alcohol reductase 6.5
YML116W 409 ATR1 Aminotriazole and 4-nitroquinoline

resistance protein
6.5

YBR008C 142, 167, 364 Homology to benomyl/methotrexate
resistance protein

6.1

YCLX08C Hypothetical protein 6.1
YJR155W Putative aryl-alcohol dehydrogenase 6.0
YPL171C 148, 212 OYE3 NAPDH dehydrogenase (old yellow

enzyme), isoform 3
5.8

YLR460C 167, 317 Homology to hypothetical proteins
YCR102c and YNL134c

4.7

YKR076W 178 Homology to hypothetical protein
YMR251w

4.5

YHR179W 327 OYE2 NAD(P)H oxidoreductase (old yellow
enzyme), isoform 1

4.1

YML131W 507 Similarity to A. thaliana zeta-crystallin
homolog

3.7

YOL126C MDH2 Malate dehydrogenase 3.3
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ing sites upstream of the others may reflect
an ability of Yap1 to bind sites that differ
from the canonical binding sites, perhaps in
cooperation with other factors, or less like-
ly, may represent an indirect effect of Yap1
overexpression, mediated by one or more
intermediary factors. Yap1 sites were found
only four times in the corresponding region
of an arbitrary set of 30 genes that were not
differentially regulated by Yap1.

Use of a DNA microarray to character-
ize the transcriptional consequences of
mutations affecting the activity of regula-
tory molecules provides a simple and pow-
erful approach to dissection and character-
ization of regulatory pathways and net-

works. This strategy also has an important
practical application in drug screening.
Mutations in specific genes encoding can-
didate drug targets can serve as surrogates
for the ideal chemical inhibitor or modu-
lator of their activity. DNA microarrays
can be used to define the resulting signa-
ture pattern of alterations in gene expres-
sion, and then subsequently used in an
assay to screen for compounds that repro-
duce the desired signature pattern.

DNA microarrays provide a simple and
economical way to explore gene expres-
sion patterns on a genomic scale. The
hurdles to extending this approach to any
other organism are minor. The equipment

required for fabricating and using DNA
microarrays (9) consists of components
that were chosen for their modest cost and
simplicity. It was feasible for a small group
to accomplish the amplification of more
than 6000 genes in about 4 months and,
once the amplified gene sequences were in
hand, only 2 days were required to print a
set of 110 microarrays of 6400 elements
each. Probe preparation, hybridization,
and fluorescent imaging are also simple
procedures. Even conceptually simple ex-
periments, as we described here, can yield
vast amounts of information. The value of
the information from each experiment of
this kind will progressively increase as
more is learned about the functions of
each gene and as additional experiments
define the global changes in gene expres-
sion in diverse other natural processes and
genetic perturbations. Perhaps the greatest
challenge now is to develop efficient
methods for organizing, distributing, inter-
preting, and extracting insights from the
large volumes of data these experiments
will provide.

REFERENCES AND NOTES
___________________________

1. M. Schena, D. Shalon, R. W. Davis, P. O. Brown,
Science 270, 467 (1995).

2. D. Shalon, S. J. Smith, P. O. Brown, Genome Res. 6,
639 (1996).

3. D. Lashkari, Proc. Natl. Acad. Sci. U.S.A., in press.
4. J. DeRisi et al., Nature Genet. 14, 457 (1996).
5. D. J. Lockhart et al., Nature Biotechnol. 14, 1675

(1996).
6. M. Chee et al., Science 274, 610 (1996).
7. M. Johnston and M. Carlson, in The Molecular Biol-

ogy of the Yeast Saccharomyces: Gene Expression,
E. W. Jones, J. R. Pringle, J. R. Broach, Eds. (Cold
Spring Harbor Laboratory Press, Cold Spring Har-
bor, NY, 1992), p. 193.

8. Primers for each known or predicted protein coding
sequence were supplied by Research Genetics.
PCR was performed with the protocol supplied by
Research Genetics, using genomic DNA from yeast
strain S288C as a template. Each PCR product was
verified by agarose gel electrophoresis and was
deemed correct if the lane contained a single band of
appropriate mobility. Failures were marked as such
in the database. The overall success rate for a single-
pass amplification of 6116 ORFs was ;94.5%.

9. Glass slides (Gold Seal) were cleaned for 2 hours in a
solution of 2 N NaOH and 70% ethanol. After rinsing
in distilled water, the slides were then treated with a
1:5 dilution of poly-L-lysine adhesive solution (Sig-
ma) for 1 hour, and then dried for 5 min at 40°C in a
vacuum oven. DNA samples from 100-ml PCR reac-
tions were purified by ethanol purification in 96-well
microtiter plates. The resulting precipitates were re-
suspended in 33 standard saline citrate (SSC) and
transferred to new plates for arraying. A custom-built
arraying robot was used to print on a batch of 110
slides. Details of the design of the microarrayer are
available at cmgm.stanford.edu/pbrown. After print-
ing, the microarrays were rehydrated for 30 s in a
humid chamber and then snap-dried for 2 s on a hot
plate (100°C). The DNA was then ultraviolet (UV )-
crosslinked to the surface by subjecting the slides to
60 mJ of energy (Stratagene Stratalinker). The rest of
the poly-L-lysine surface was blocked by a 15-min
incubation in a solution of 70 mM succinic anhydride
dissolved in a solution consisting of 315 ml of 1-
methyl-2-pyrrolidinone (Aldrich) and 35 ml of 1 M
boric acid (pH 8.0). Directly after the blocking reac-

Fold
induction

Fold
repression

Fold
induction

Fold
repression

9 11 13 15 17 19 21
4

2

2

4

6

8

10

12

14

16

1:1

4

2

2

4

6

8

10

12

14

16

1:1

MLS1
IDP2
ICL1
ACS1
ACR1
FBP1
PPC1

BA

9 11 13 15 17 19 21

9 11 13 15 17 19 219 11 13 15 17 19 21

9 11 13 15 17 19 219 11 13 15 17 19 21

0

1

2

3

4

5

6

7

8 20

15

10

5

0

G
lu

co
se

 (g
/li

te
r)

20

15

10

5

0

G
lu

co
se

 (g
/li

te
r)

20

15

10

5

0

G
lu

co
se

 (g
/li

te
r)

20

15

10

5

0

G
lu

co
se

 (g
/li

te
r)

20

15

10

5

0

G
lu

co
se

 (g
/li

te
r)

20

15

10

5

0

G
lu

co
se

 (g
/li

te
r)

O
D

 6
00

 n
m

C

YKL026C
YGR043C

GSY2
CTT1
HSP42
HSP26
HSP12

1:1

CYT1
COX5A
COX6
COX13
RIP1
QCR7
COR1

D

4

2

2

4

6

8

10

Time (hours)

1:1

YPL012W
YNL141W
YMR290C
SAM1
GPP1
YGR160W
YDR398W

1:1

RP23
SSM1A
RPLA0
RPL6A
URP2
RPL15A
RPL4B

E F

10

8

6

4

2

2

4

10

8

6

4

2

2

4

Fig. 5. Distinct temporal patterns of induction or repression help to group genes that share regulatory
properties. (A) Temporal profile of the cell density, as measured by OD at 600 nm and glucose
concentration in the media. (B) Seven genes exhibited a strong induction (greater than ninefold) only at
the last timepoint (20.5 hours). With the exception of IDP2, each of these genes has a CSRE UAS. There
were no additional genes observed to match this profile. (C) Seven members of a class of genes marked
by early induction with a peak in mRNA levels at 18.5 hours. Each of these genes contain STRE motif
repeats in their upstream promoter regions. (D) Cytochrome c oxidase and ubiquinol cytochrome c
reductase genes. Marked by an induction coincident with the diauxic shift, each of these genes contains
a consensus binding motif for the HAP2,3,4 protein complex. At least 17 genes shared a similar
expression profile. (E) SAM1, GPP1, and several genes of unknown function are repressed before the
diauxic shift, and continue to be repressed upon entry into stationary phase. (F ) Ribosomal protein
genes comprise a large class of genes that are repressed upon depletion of glucose. Each of the genes
profiled here contains one or more RAP1-binding motifs upstream of its promoter. RAP1 is a transcrip-
tional regulator of most ribosomal proteins.

REPORTS

www.sciencemag.org z SCIENCE z VOL. 278 z 24 OCTOBER 1997 685



tion, the bound DNA was denatured by a 2-min in-
cubation in distilled water at ;95°C. The slides were
then transferred into a bath of 100% ethanol at room
temperature, rinsed, and then spun dry in a clinical
centrifuge. Slides were stored in a closed box at
room temperature until used.

10. YPD medium (8 liters), in a 10-liter fermentation
vessel, was inoculated with 2 ml of a fresh over-
night culture of yeast strain DBY7286 (MATa, ura3,
GAL2). The fermentor was maintained at 30°C with
constant agitation and aeration. The glucose con-
tent of the media was measured with a UV test kit
(Boehringer Mannheim, catalog number 716251)
Cell density was measured by OD at 600-nm wave-
length. Aliquots of culture were rapidly withdrawn
from the fermentation vessel by peristaltic pump,
spun down at room temperature, and then flash
frozen with liquid nitrogen. Frozen cells were stored
at –80°C.

11. Cy3-dUTP or Cy5-dUTP (Amersham) was incorpo-
rated during reverse transcription of 1.25 mg of
polyadenylated [poly(A)1] RNA, primed by a dT(16)
oligomer. This mixture was heated to 70°C for 10
min, and then transferred to ice. A premixed solu-
tion, consisting of 200 U Superscript II (Gibco),
buffer, deoxyribonucleoside triphosphates, and flu-
orescent nucleotides, was added to the RNA. Nu-
cleotides were used at these final concentrations:
500 mM for dATP, dCTP, and dGTP and 200 mM
for dTTP. Cy3-dUTP and Cy5-dUTP were used at
a final concentration of 100 mM. The reaction was
then incubated at 42°C for 2 hours. Unincorporat-
ed fluorescent nucleotides were removed by first
diluting the reaction mixture with of 470 ml of 10
mM tris-HCl (pH 8.0)/1 mM EDTA and then subse-
quently concentrating the mix to ;5 ml, using Cen-
tricon-30 microconcentrators (Amicon).

12. Purified, labeled cDNA was resuspended in 11 ml of
3.53 SSC containing 10 mg poly(dA) and 0.3 ml of
10% SDS. Before hybridization, the solution was
boiled for 2 min and then allowed to cool to room
temperature. The solution was applied to the mi-
croarray under a cover slip, and the slide was
placed in a custom hybridization chamber which
was subsequently incubated for ;8 to 12 hours in
a water bath at 62°C. Before scanning, slides were
washed in 23 SSC, 0.2% SDS for 5 min, and then
0.053 SSC for 1 min. Slides were dried before
scanning by centrifugation at 500 rpm in a Beck-
man CS-6R centrifuge.

13. The complete data set is available on the Internet at
cmgm.stanford.edu/pbrown/explore/index.html

14. For 95% of all the genes analyzed, the mRNA levels
measured in cells harvested at the first and second
interval after inoculation differed by a factor of less
than 1.5. The correlation coefficient for the compar-
ison between mRNA levels measured for each gene
in these two different mRNA samples was 0.98.
When duplicate mRNA preparations from the same
cell sample were compared in the same way, the
correlation coefficient between the expression levels
measured for the two samples by comparative hy-
bridization was 0.99.

15. The numbers and identities of known and putative
genes, and their homologies to other genes, were
gathered from the following public databases: Sac-
charomyces Genome Database (genome-www.
stanford.edu), Yeast Protein Database (quest7.
proteome.com), and Munich Information Centre for
Protein Sequences (speedy.mips.biochem.mpg.de/
mips/yeast/index.htmlx).

16. A. Scholer and H. J. Schuller, Mol. Cell. Biol. 14,
3613 (1994).

17. S. Kratzer and H. J. Schuller, Gene 161, 75 (1995).
18. R. J. Haselbeck and H. L. McAlister, J. Biol. Chem.

268, 12116 (1993).
19. M. Fernandez, E. Fernandez, R. Rodicio, Mol. Gen.

Genet. 242, 727 (1994).
20. A. Hartig et al., Nucleic Acids Res. 20, 5677 (1992).
21. P. M. Martinez et al., EMBO J. 15, 2227 (1996).
22. J. C. Varela, U. M. Praekelt, P. A. Meacock, R. J.

Planta, W. H. Mager, Mol. Cell. Biol. 15, 6232 (1995).
23. H. Ruis and C. Schuller, Bioessays 17, 959 (1995).
24. J. L. Parrou, M. A. Teste, J. Francois, Microbiology

143, 1891 (1997).

25. This expression profile was defined as having an
induction of greater than 10-fold at 18.5 hours and
less than 11-fold at 20.5 hours.

26. S. L. Forsburg and L. Guarente, Genes Dev. 3, 1166
(1989).

27. J. T. Olesen and L. Guarente, ibid. 4, 1714 (1990).
28. M. Rosenkrantz, C. S. Kell, E. A. Pennell, L. J. De-

venish, Mol. Microbiol. 13, 119 (1994).
29. Single-letter abbreviations for the amino acid resi-

dues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F,
Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N,
Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W,
Trp; and Y, Tyr. The nucleotide codes are as follows:
B–C, G, or T; N–G, A, T, or C; R–A or G; and Y–C or
T.

30. C. Fondrat and A. Kalogeropoulos, Comput. Appl.
Biosci. 12, 363 (1996).

31. D. Shore, Trends Genet. 10, 408 (1994).
32. R. J. Planta and H. A. Raue, ibid. 4, 64 (1988).
33. The degenerate consensus sequence VYCYRNNC-

MNH was used to search for potential RAP1-binding
sites. The exact consensus, as defined by (30), is
WACAYCCRTACATYW, with up to three differenc-
es allowed.

34. S. F. Neuman, S. Bhattacharya, J. R. Broach, Mol.
Cell. Biol. 15, 3187 (1995).

35. P. Lesage, X. Yang, M. Carlson, ibid. 16, 1921
(1996).

36. For example, we observed large inductions of the
genes coding for PCK1, FBP1 [ Z. Yin et al., Mol.
Microbiol. 20, 751 (1996)], the central glyoxylate
cycle gene ICL1 [A. Scholer and H. J. Schuller,
Curr. Genet. 23, 375 (1993)], and the “aerobic”
isoform of acetyl-CoA synthase, ACS1 [M. A. van
den Berg et al., J. Biol. Chem. 271, 28953 (1996)],
with concomitant down-regulation of the glycolyt-
ic-specific genes PYK1 and PFK2 [P. A. Moore et
al., Mol. Cell. Biol. 11, 5330 (1991)]. Other genes
not directly involved in carbon metabolism but
known to be induced upon nutrient limitation in-
clude genes encoding cytosolic catalase T CTT1
[P. H. Bissinger et al., ibid. 9, 1309 (1989)] and
several genes encoding small heat-shock proteins,
such as HSP12, HSP26, and HSP42 [I. Farkas et
al., J. Biol. Chem. 266, 15602 (1991); U. M.
Praekelt and P. A. Meacock, Mol. Gen. Genet. 223,
97 (1990); D. Wotton et al., J. Biol. Chem. 271,
2717 (1996)].

37. The levels of induction we measured for genes that
were expressed at very low levels in the uninduced
state (notably, FBP1 and PCK1) were generally lower
than those previously reported. This discrepancy
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Meeting Report: Synthetic Biology Jamboree
for Undergraduates

A. Malcolm Campbell

Davidson College, Biology Department, P.O. Box 7118, Davidson, NC 28035

While most of us have been following news in the fields of
genomics, proteomics, bioinformatics, and maybe even
systems biology, a new field may have escaped our attention.
The field of synthetic biology (the name is derived from an
analogy to synthetic chemistry) has recognized itself as a
‘‘field’’ only since about 2002. Synthetic biology has gotten
some high-profile attention recently (e.g., Ferber, 2004; Hasty
et al., 2002; Hopkin, 2004; Nature Staff, 2004a, b; Pennisi,
2003; Zak et al., 2003), but most people are not aware the field
even exists. Synthetic biologists apply engineering principles
to genomic circuits to construct small biological devices. The
Jamboree, as it was affectionately called, was the culmination
of a summer of undergraduate research on five campuses
across the United States.1 The participants shared data,
frustrations, lessons learned, and plans for the future. The
entire weekend was, to some extent, a pyramid turned
upside down. Normally, new fields in biology are explored
first by postdocs and graduate students under the watchful
eyes of their Primary Investigator (PI) mentors. This National
Science Foundation (NSF)–supported Jamboree featured
undergraduates (some having just completed one year of
college) who were pushing the boundaries of a field so new,
its name is subject to debate. This report will highlight some
of the interesting research conducted by undergraduates
during the summer and early fall of 2004.
Teams of undergraduates spent 10 weeks of their summers

blending biology with computer science, engineering, and
chemistry (Figure 1). As is often true of young students,
many were oblivious of the significance of their efforts before
the Jamboree. Only after sharing their stories did they begin
to appreciate the magnitude of their summer’s efforts. Each
group of students had been given a one-phrase directive
(design and build a genetically encoded finite state machine),
and over the summer, they designed, modeled, built, and
tested their constructions. The most interesting presentations
were those made by undergraduates. One team had more

senior people present, and you could tell they were less
candid and less enthusiastic. When the undergraduates
spoke, they had a sheen of freshness and personal invest-
ment that was infectious and exhilarating.

The teams were composed of diverse sets of students, with
only two self-identified as biology majors with previous lab
experience. The educational goals of this NSF-funded
program were varied and vague: to introduce students to a
new field; to encourage them to stay in this field; to increase
excitement about research; and to foster cross-disciplinary
education and collaboration. Although these goals are
difficult to define and assess, they are exactly what the
National Research Council’s publication Bio2010 stated the
future of biomedical research requires to bring success in the
future and a more diverse population to biology (National
Research Council, 2003).

BACKGROUND FOR SYNTHETIC BIOLOGY

Any new field evolves from the work of pre-existing fields,
but a few seminal papers can be cited as the foundation for
synthetic biology. In one such paper, Gardner et al. (2000)
report the design and construction of a genetic bistable
toggle switch in Escherichia coli (Figure 2A). The design is
simple: two promoters and three genes. When the black gene
is active, the gray gene and the reporter gene are silenced.
Conversely, when the gray gene is active, so too is the
reporter gene, but the black gene is repressed. The gray
inducer (IPTG) leads to the production of the reporter
protein, green fluorescent protein (GFP), whereas the black
inducer (tetracycline) halts production of the reporter GFP
(Figure 2B). This simple biological machine might seem like a
widget that does nothing in particular, but imagine if the
reporter gene were exchanged with a biologically functional
gene. Then a production facility could turn the secretion of a
biomedical product on and off that otherwise would be toxic
to the cells. Or, perhaps the cells could monitor waste sewage
from a factory to detect violations of environmental laws.

The ‘‘repressilator’’ by Elowitz and Leibler (2000) set a
precedent for naming (fill in the blank–alator) and sophisti-
cation. The repressilator is composed of two plasmids (Figure
3A). The larger plasmid contains the oscillatory circuit of
three repressors. Each repressor is induced in turn, so the
circuit rotates around the plasmid as the previous repressors
are degraded by the cell. When TetR is produced, the
production of GFP is silenced. Activity of the repressilator
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is monitored by observing GFP, which oscillates at a regular
interval (Figure 3B). It is worth noting that the periodicity of
the GFP cycle was much longer than the periodicity of cell
division by the bacteria, which indicates the signaling
mechanism outlived the lifetime of any given cell.

THEIR AMAZING MACHINES

Now that you have an idea what synthetic biologists do, I
want to share two student constructions with you. The first

was produced by a Princeton team that wanted to build a
biological equivalent of the children’s game called Simon (see
http://www.begent.net/games/simon/simongame.htm for an
online version). The object of the game is for the user to repeat
a pattern of signals that grow in complexity at each successful
iteration. What the Princeton team wanted to produce was a
set of three bacterial strains that could correctly detect the

Figure 1. Participants and mentors at the 2004 Synthetic Biology Jamboree, held on the grounds of the American Academy of Arts and
Sciences in Cambridge, MA.

Figure 2. Bistable toggle switch. A. Generic design of a bistable
switch that can be flipped one of two ways depending on which
inducer is applied. B. Data produced by the final bistable toggle
switch (panel a, blue trace) as well as several control constructs
(black traces).

Figure 3. Repressilator. A. The repressilator was designed to
produce three repressors in succession, each degrading over time
and repressing a different promoter. The progress of the cycle was
monitored by the production of GFP, encoded on a separate plasmid
and repressed by one of the three repressors on the repressilator
plasmid. B. Production of GFP was monitored over time. The black
bars at the bottom indicate the time of cell division for a collection of
E. coli cells monitored through a microscope.
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input of three environmental stimuli that had to be delivered
in a particular sequence. In addition, like the game, their
biological Simon had the capacity to be reset at will (Figure 4).
With the use of BioBricks from the MIT database (http://

parts.mit.edu/), the students designed three strains of cells
that had three different circuits. The first cell type accepted
the input of anhydrotetracycline (aTc) and secreted a
molecule in response. Cell type 2 accepted the input of
homoserine lactone (HSL) and the secreted molecule from
cell type 1 and responded by secreting a newmolecule, which
was half of the signal required by cell type 3. When the user
applied arabinose to cell type 3, which had been signaled by
cell type 2, the third and final cell in the chain responded by
producing yellow fluorescent protein (YFP). At any step in
the process, the students could reset their biological Simon by
applying a heat shock, which would destabilize a temper-
ature-sensitive component (cIts) shared by the last two cell
types. The team was not able to build their biological Simon
because of problems they had in the construction phase and
the YFP gene in particular. The students used parts from the
BioBricks library and offered suggestions for ways the
BioBricks repository could be improved.
One of the CalTech teams designed and built a strain of

yeast that was capable of detecting three concentrations of
caffeine. For their design, this team relied on small noncoding
RNA switches composed of twodomains: an aptamer domain
and an antisense domain.Aptamers are nucleic acidmolecules
that can bind to small ligands with a high degree of specificity.
Depending on how the RNA switches were designed, they
could activate or inactivate sequence-specific mitochondrial
RNAs (mRNAs). The students designed and constructedRNA
switches that could detect the ligand caffeine at different
concentrations and built two types of switches. One switch
destroyed GFP mRNA at high doses of caffeine, whereas the
other switch activated YFP mRNA beginning at medium
doses of caffeine. The combination of switches produced a cell

that glowed green in the presence of low caffeine, green and
yellow in medium caffeine, and yellow only in high caffeine.
Having proven their device worked under laboratory con-
ditions, the students headed out to their favorite campus
source of coffee and tested their device on real-world samples
(Figure 5). To everyone’s delight, their modified yeast could
distinguish decaf, regular, and espresso coffees. As one
Jamboree participant noted, combining coffee and yeast
metabolites is the dream of every student.

There were additional presentations by students. Some
emphasized computer modeling of behaviors and others
focused on biological output. For example, some cells were
designed and modeled to swarm toward a chemoattractant,
signal each other, diffuse away, signal each other, and
reswarm. Another team produced cells that were photo-
sensitive and produced a color product. The photosensitive
results culminated in the world’s first biological photograph
of the oft used phrase in computer science, ‘‘Hello World.’’

MEASURING SUCCESS

One goal of the Jamboree was to foster interdisciplinary
collaborations. The selection process assured the goal of
mixing students from different disciplines. Chemistry and
computer science were the two most common majors after
engineering. Some of the students had taken a previous course
at their home institutions that prepared them for synthetic
biology, but this was true for only a small percentage of the
summer research students. Therefore, many participants were
exposed to a new field during their summer research.

As the summer began, itwasuncertainwhether the students
would enjoy their experience and be influenced to stay in the
field of synthetic biology. During the breaks, I talked to several
students informally and heard some say how the summer had
affected their career interests. A couple of their comments
were: ‘‘I had some prior research but now I’mmore interested

Figure 4. Circuitry for Simon 1.0, designed by a team of undergraduates from Princeton University. The three cell types were part of a pattern
of inputs that had to be produced in the correct order for the reporter protein, yellow fluorescent protein (YFP), to be produced.
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in biology, specifically in engineering circuits. I am continuing
to do research this semester and amworking now tomake our
machine function.’’ and ‘‘I gained an appreciation for CS
[computer science] and will take some CS courses during the
last semester of my senior year as a biology major.’’
Every one of the summer groups has some students that

continue to work on their constructions. This shows real
commitment, excitement, and the spark of a researcher in the
making. Approximately one-third of all students at the
Jamboree were still working on their projects in November.
Rather than seeing this as a sign of failed summer work, the
students saw continuation on their projects as a challenge
worthy of their time. Research is not easy and they know it.
When asked whether the weekend gathering was useful,

everyone at my lunch table said absolutely. Before the
weekend, they did not realize others were interested in their
efforts. They had assumed none of the other groups were
having problems and something must be wrong with them
for the frustrations and setbacks they faced. Hearing the
troubles experience by each group helped individuals gain a
better understanding of the expression, ‘‘if it were easy, no
one would interested.’’ They enjoyed hearing the diverse
plans and outcomes from the other groups.
Some lessons learned include the need for clear and

ongoing communication. The participants learned that a
community is more productive than an individual, uncoor-
dinated effort. They took pride in their work and enjoyed
sharing with their peers. Although an electronic discussion

board was available, it was not used much, which probably
says more about the negative side of electronic communica-
tion compared with personal contacts.

CONCLUSION

It is a rare treat to watch the birth of a new island when a
volcano rises from the ocean. The Jamboree felt like the
intellectual equivalent, with burgeoning students creating
fantastic designs and finite state machines. The future of
synthetic biology could be very bright. These undergradu-
ates personified the recommendations of Bio2010 (National
Research Council, 2003). They did world-class work, yet their
level of training was embryonic. Imagine where they may
lead the field in 20 years. I was so impressed with their work
that this summer, I too will have my students design, model,
and produce simple biological machines. We will begin by
reading and designing, but the students will need to settle on
a design quickly enough to have time to build their devices.
During the final session of the Jamboree, the group

discussed the ethical, legal, and social implications (ELSI)
of synthetic biology (see Ferber, 2004; Hopkin, 2004).
Considering the ELSI of synthetic biology was new for the
undergraduates, although it was a familiar topic for their PIs.
The perception of a self-contained, insulated group of
scientists is what could put synthetic biology in the same
politically charged boat as stem cells, somatic cell cloning,
and GMOs; knowledge is trumped by fear every time. All

Figure 5. The team from Caltech constructed yeast cells that were able to distinguish low, medium, and high levels of caffeine. Two reporter
proteins, green fluorescent protein (GFP) and yellow fluorescent protein (YFP), signaled which level of caffeine was detected. Shown here are
the four student investigators comparing their skills against the caffeine-sensing fungi. Clockwise, from top left: Travis Bayer, Maung Nyan
Win, Brandon Rawlings, and Jack Lee.
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investigators should link ELSI and education with synthetic
biology research if we want it to be funded by the U.S.
government.
The Jamboree leaders also need to place a bit more effort in

measuring educational outcomes. Educational assessment is
awkward and sometimes abhorrent to scientists, but why
treat our teaching any less seriously than our science? Would
you accept a claim in science without data? If not, then why
trust your instinct when data are available? A short survey at
the end would provide ‘‘summative’’ data. Howmany of you
will take additional courses in this area? How many of you
will take courses in different departments as a result of your
experience? How many of you would like to continue your
work beyond the summer? How many of you would like to
pursue this type of research in graduate school? Would you
like to use this as a foundation for an honors thesis? Would
you recommend your friends get involved in future summers?
In the end, the students seemed unanimous that the

Jamboree should become a national and annual event. It is
impressive that students could design cells from BioBricks
parts to perform new functions. Perhaps next year, my
students can share their results, and more schools will join
the fun of the 2005 Jamboree.
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DeRisi Paper Analysis Pre-Workshop Problem Set

This assignment can be done during the workhop.  We will discuss the questions and
answers during the workshop.  The material that you need can be found in the article
by DeRisi et al. referred to below.  A copy is included in your notebook.  DeRisi, J. ,
Iyer, V, and Brown, P. O.  Exploring the metabolic and genetic control of gene
expression on a global scale.  Science. 278:680-686 (1997). 

1) Please answer the following with regard to your plans to use microarrays
in an undergraduate class.

a. How will microarray use relate to the overall goals of your
class?

 

b. What concerns do you have about using this type of experiment
in your class?

 

c. If you have chosen a type of microarray experiment that you
would like your class to perform, what kind?

 

d. How much time are you planning to devote to microarray
experiments?  To microarray data analysis?

 

e. What contingencies do you have in mind for problems that may
arise with your microarray experiments?

 

2) We will be preparing total RNA and then we will copy the mRNA (a
small minority of the RNA molecules present, about 1-3%) into cDNA. 
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a. Why won’t the noise from the other RNAs drown out the signal
from the mRNA?  (Hint: we will be using a short molecule of
oligo dT (16 T nucleotides in a row) as the primer for reverse
transcription, so you may want to consider how eukaryotic mRNAs
are processed in the nucleus.)  Explain why this method would
copy the mRNA but not the rRNA, tRNA,  or other RNA
molecules present.

 

 

b. What would be the effect of contaminating DNA in our RNA
preparations upon the cDNA synthesis?

 

 

c. Would this method, using oligo dT primed cDNA synthesis, be
suitable for use with prokaryotic total RNA preparations?

 

 

3) In the formation of the cDNA, we will be incorporating molecules of
fluorescent dyes called Cy3 and Cy5.  Cy3 fluoresces green and Cy5
fluoresces red (that’s not the colors they look like, but the colors of
fluorescent light they emit when excited).  Each of these dyes will be added
to the reaction mixture coupled to dUTP. 

a. What base will each of these dye-coupled nucleotides pair with?
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b. Since the bulky dye slows the cDNA synthesis, what do you
think might  be done to incorporate dye but still keep the speed of
synthesis up? 

 

 

c. Diagram how you would set up the experiment so that the Cy3
dye will be attached to the cDNA from the glucose/0.7 cells and
the Cy5 dye attached to the cDNA from the ethanol/6.0 cells?

 

 

d. If you started with the SAME RNA for the two fluorescently
labeled preparations, mixed together the two cDNA preparations,
and hybridized them with the same microarray slide containing all
the yeast genes, can you think of any reasons why they should not
hybridize to each spot with exactly the same green and red
fluorescence intensities (ratio of 1.000000)?  (No fair answering 
‘experimental error”; be specific!)

 

 

4) Read the 1997 paper by DeRisi on gene expression changes in yeast
diauxie.  The diauxie means ‘two foods’ and refers to the use of glucose
first, producing ethanol by non-oxygen requiring pathways, and then the
aerobic utilization of ethanol.  There is no need to change the medium; it
naturally happens over time.  We will be using total RNA prepared from
yeast early in the logarithmic growth period (A600 = 0.7) and total RNA
prepared from yeast late in growth near stationary phase (A600 = 6.0).

a. After you have read the DeRisi paper, using the last set of
graphs in the paper and, if you wish the Saccharomyces Genome
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Database, at the web site: http://www.yeastgenome.org/ write
down three genes you predict would be high and three genes you
would predict would be low in expression when using glucose
(0.7) and when using ethanol aerobically (6.0).  Use the three letter
gene name and the yeast gene identifier for each one.  (Example:
ENO1, YGR254W) 

0.7 A600; glucose use 6.0 A600; aerobic ethanol use
predicted high expression:

 

 

 

predicted high expression:

 

 

 
predicted low expression:

 

 

 

predicted low expression:

 

 

 

 

b. For each of these genes given above, briefly describe the
molecular function and the biological process in which the gene is
involved.  You may use the SGD shorthand versions or read the
longer descriptive paragraphs and give a longer summary.

 

 

 

5) In microarray data, genes from the same pathway often are co-regulated. 
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What kinds of mechanisms could result in coordinate transcriptional control
of all the genes in the same pathway? 

 

 

 

6) In microarray data, duplicate samples do not always provide the same
green/red ratios in the output data. 

a. What are some of the reasons why they might not?  How could
these reasons be best addressed in figuring out the meaning of
apparent changes in gene expression?

 

 

 

b. What controls can be used to address these problems?

 

 

c. How do these problems confound the interpretation of apparent
changes in gene expression?

 

 

7) Our microarray expression technique generates data in the form of ratios of mRNA
signals from cells grown under two conditions.  People talk informally about the
results as if they show that mRNA is induced under some condition and repressed
under some other condition.  However, this method does not measure the absolute
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amount of mRNA present, nor does it measure how fast it is being synthesized or
broken down.  Rather, it measures the ratio of the ‘standing crop’ of the total mRNA
present under two different conditions. 

a. In your own words, explain what we are actually measuring with this method. 
Explain why this insight makes the choice of a control sample absolutely critical to the
interpretation of the results.

 

 

b. What factors besides mRNA concentration affect the level of the functional protein
product of a gene?

 

 

8) The investigators at Institute for Systems Biology in Seattle have found that only
around 60% of the changes they see in mRNA hybridization on microarray chips
correspond to changes in the cellular concentration of the same protein encoded by the
mRNA.  Given what is discussed in question 6 and question 7, why do you think
people are still using this technique; i.e. what can it contribute to our understanding
compared with other methods for examining regulatory events?
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