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Math Minute 6.1 Why Should You Log-Transform Microarray Data?

You have seen how red-to-green intensity ratios are computed from the intensity levels
determined in the scanning process, and how they represent repression or induction of
the genes. For example, a four-fold repression in gene expression results in a ratio of
approximately 0.25. Similarly, a 16-fold repression results in a ratio of 0.0625, a 4-fold
induction 4.0, and a 16-fold induction 16.0. But there is a much greater numerical dif-
ference between 4.0 and 16.0 than there is between 0.25 and 0.0625. Graph the expres-
sion patterns for genes C and N from Table 6.1 on a single set of axes, and notice how
the induction stands out much more clearly than the repression, even though the
repression is of the same magnitude. In addition to biasing our visual interpretation of
gene expression patterns, the compression of ratios between 0 and 1 causes problems
with mathematical techniques for analyzing and comparing gene expression patterns
(Math Minute 6.2). Furthermore, to interpret a ratio less than 1 as a fold repression,
you must take its reciprocal (e.g., 1/0.0625 � 16.0), an operation that most people find
difficult to do quickly and accurately in their heads.

To avoid these problems, investigators often use a log transformation of the ratio
data. Log transformation is illustrated in the following example. Suppose the ratio is
0.0625. Take the base 2 logarithm of this number:

log2(0.0625) � log2(1/16) � log2(1) � log2(16) � �log2(16) � �4.

Because the log2 of 1/16 is the negative of the log2 of 16, a 16-fold induction and a 16-
fold repression have the same magnitude (one positive and one negative) in the log2-
transformed data. The magnitude of the number is the power of 2 needed to get the
induction/repression number (e.g., 16 � 24). The log2 transformations of the ratios in
Table 6.1 are given in Table MM6.1.

Sometimes log10 is used instead of log2; in this case, the magnitude of the trans-
formed data is the power of 10 needed to get the induction/repression number. Trans-
forming the same ratios as above leads to the following:

log10(4) � 0.6 log10(.25) � �0.6,

log10(16) � 1.2 log10(0.0625) � �1.2.

In log2 transformed data, a value of 2 corresponds to a ratio of 4; however, you would
be surprised to see a value as large as 2 in log10 transformed data, since 2 corresponds to
a ratio of 100. In general, a log2 transformation helps you easily identify doublings or
halvings in ratios, while a log10 transformation helps you see order-of-magnitude
changes. The key attribute of log-transformed expression data is that equally sized
induction and repression receive equal treatment visually and mathematically.

Table MM6.1 Log2 transformation of gene expression data in Table 6.1.

Name 0 hours 2 hours 4 hours 6 hours 8 hours 10 hours

gene C 0 3 3.58 4 3.58 3
gene D 0 1.58 2 2 1.58 1
gene E 0 2 3 3 3 3
gene F 0 0 0 �2 �2 �3.32
gene G 0 1 1.58 2 1.58 1
gene H 0 �1 �1.60 �2 �1.60 �1
gene I 0 2 3 2 0 �1
gene J 0 1 0 1 0 1
gene K 0 0 0 0 1.58 1.58
gene L 0 1 1.58 2 1.58 1
gene M 0 �1.60 �2 �2 �1.60 �1
gene N 0 �3 �3.59 �4 �3.59 �3
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Math Minute 6.2 How Do You Measure Similarity between Expression Patterns?

In Table 6.1, the transcriptional responses of genes G and L are clearly similar, since
they have the same ratios at each time point. But what about gene D? How similar is its
response to that of genes G and L? A common way to measure the similarity between
gene expression patterns like those in Table 6.1 is with the Pearson correlation coeffi-
cient, abbreviated with the letter r.

Correlation quantifies the extent to which the expression patterns of two genes go
up together and down together over several time points or experimental conditions,
even if the numbers are not of the same magnitude. A correlation coefficient of 1.0
between two genes means that their expression patterns track each other perfectly. A
correlation coefficient of –1.0 between two genes means that their expression
patterns track perfectly, but in opposition to one another (i.e., one goes up while the
other goes down). A correlation coefficient near zero means that the expression patterns
of the two genes do not track each other at all. You can experiment with the correlation
guide web page and the Excel file correl_explore.xls to gain an intuitive understanding
of correlation.

In the following example, we will work with the expression values given in Table 6.1
to further illustrate the disadvantages of analyzing raw (untransformed) expression
ratios, as discussed in Math Minute 6.1. To find the correlation between genes D and L,
denoted rDL, first compute the sample mean and sample standard deviation of the
expression values for each gene (i.e., each row):

X
–

D � 2.83 X
–

L = 2.5 �D � 1.067 �L � 0.957.

Subtract X
–

D from each value in the D row and divide each result by �D. The result is a
row of normalized values in the D row:

Dnorm � �1.715, 0.1593, 1.097, 1.097, 0.1593, �0.7779.

Do the same in the L row, this time subtracting X
–

L and dividing by �L, to produce the
following normalized row:

Lnorm � �1.567, �0.5225, 0.5225, 1.567, 0.5225, �0.5225.

Now multiply the first number in Dnorm by the first number in Lnorm, the second num-
ber in Dnorm by the second number in Lnorm, and so on, keeping a running sum of these
products. (You might recognize this operation as the dot product of the two vectors
Dnorm and Lnorm.) Finally, divide this sum (5.386) by the number of elements in each
row (6) to get the correlation coefficient rDL � 0.897.

Figure 6.9 Gene expression clusters 
of several thousand genes.
Go to www.geneticsplace.com to view
this figure.

When gene expression ratios are clustered
and converted to colors, trends are easier to
see than when the data were unorganized
ratios (see Table 6.2). With the need to con-
vert large amounts of data from unorgan-

ized ratios to clustered colors, a wonderful collaboration
was born between biologists and computer scientists/
applied mathematicians, resulting in software that auto-
matically produces the colored ratios and clusters genes
according to their expression patterns. Collaborations of
this sort have created a new interdisciplinary field known as
bioinformatics. In the preceding examples, each row repre-
sents a particular gene, and each column represents a time

L I N KS
bioinformatics

MATH M I N UTES
correl_explore.xls
correlation guide

Now you have a pretty good understanding of DNA chips,
but you have not figured out why your beer bottles exploded.
You had hoped the DeRisi paper would offer you some
practical advice, but class is over, and no one has told you the
bottom line. You decide you’ll have to read it yourself.

point. When all 6,200 genes are clustered this way, the
boxes are reduced to thin lines (Figure 6.9).
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Notice that the expression ratios for genes H and M are the reciprocals of the ratios
for genes L and D, respectively. In other words, gene H is repressed to exactly the same
extent that gene L is induced, and gene M is repressed to the same extent as D is
induced. We would thus expect rDL, which compares the patterns of induction, to be
the same as rHM, which compares the patterns of repression. However, rHM is 0.97,
which is quite a bit larger than rDL. This strange behavior occurs because correlation is
sensitive to the relative magnitudes of the patterns, and can be prevented by first log-
transforming the data (see Math Minute 6.1). The correlation coefficients of each pair
of genes in Table MM6.1, computed with the log-transformed data, are shown in Table
MM6.2. Note that rHM is now the same as rDL.

Because the correlation between genes D and L is close to 1, we conclude that gene
D is highly similar to gene L (and thus also highly similar to G). This conclusion can
lead to hypotheses about the function of gene D if genes G and L are well understood,
but gene D is not. In Math Minute 6.3, we will see how correlations can be used to
group highly similar genes so that these hypotheses can be made genome-wide.

Table MM6.2 Correlation coefficient between each pair of genes, based on log2-transformed gene expression data in Table MM6.1.

gene C gene D gene E gene F gene G gene H gene I gene J gene K gene L gene M gene N

gene C 1 0.94 0.96 �0.40 0.95 �0.95 0.41 0.36 0.23 0.95 �0.94 �1
gene D 0.94 1 0.84 �0.10 0.94 �0.94 0.68 0.24 �0.07 0.94 �1 �0.94
gene E 0.96 0.84 1 �0.57 0.89 �0.89 0.21 0.30 0.43 0.89 �0.84 �0.96
gene F �0.40 �0.10 �0.57 1 �0.35 0.35 0.60 �0.43 �0.79 �0.35 0.10 0.40
gene G 0.95 0.94 0.89 �0.35 1 �1 0.48 0.22 0.11 1 �0.94 �0.95
gene H �0.95 �0.94 �0.89 0.35 �1 1 �0.48 �0.21 �0.11 �1 0.94 0.95
gene I 0.41 0.68 0.21 0.60 0.48 �0.48 1 0 �0.75 0.48 �0.68 �0.41
gene J 0.36 0.24 0.30 �0.43 0.22 �0.21 0 1 0 0.22 �0.24 �0.36
gene K 0.23 �0.07 0.43 �0.79 0.11 �0.11 �0.75 0 1 0.11 0.07 �0.23
gene L 0.95 0.94 0.89 �0.35 1 �1 0.48 0.22 0.11 1 �0.94 �0.95
gene M �0.94 �1 �0.84 0.10 �0.94 0.94 �0.68 �0.24 0.07 �0.94 1 0.94
gene N �1 �0.94 �0.96 0.40 �0.95 0.95 �0.41 �0.36 �0.23 �0.95 0.94 1

MATH M I N UTE D ISCOVE RY QU ESTIONS
1. The diagonal entries of Table MM6.2 need not be calculated, because

rAA � 1 for any gene A. Furthermore, the entries above (or below) the diago-
nal entries need not be calculated, because correlation is a symmetric function
(i.e., rAB � rBA, for any two genes A and B). How many entries in 
Table MM6.2 must be calculated?

2. Find a simple formula that represents the number of entries in Table MM6.2
that must be calculated (i.e., your answer to question 1) as a function of the
number of genes being compared.

Math Minute 6.3 How Do You Cluster Genes?

Figure 6.9 shows the results of clustering several thousand genes, just as Table 6.3 and
Figure 6.8 illustrated the results of clustering the 12 genes in Table 6.2. The purpose of
cluster analysis is to organize the genes into groups whose members’ expression patterns
are all similar to one another according to a particular similarity measure (e.g., Pearson
correlation coefficient; see Math Minute 6.2). In Figure 6.8, you could arrange the 12
gene expression patterns by hand so that similar patterns were adjacent to one another
as much as possible. However, computer algorithms are required to achieve the
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Table MM6.3 Correlations between [EC] and all other objects.

D F H I J K M N [LG]

0.90 �0.48 �0.93 0.32 0.33 0.32 �0.90 �0.99 0.93

genome-wide clustering shown in Figure 6.9. There are many methods
for clustering genes; the one used in our case studies is hierarchical
clustering.

Hierarchical clustering works as follows. First, find the two most similar genes in
the entire set of genes. Join these together into a cluster. Now join the next two
most similar objects (an object can be a gene or a cluster), forming a new cluster. Add the
new cluster to the list of available objects, and remove the two objects used to form the
new cluster. Continue this process, joining objects in the order of their similarity to one
another, until there is only one object on the list—a single cluster containing all genes.

To find the two most similar objects, we need a way to measure similarity when one
or both objects being compared are clusters of genes. One way is to average the log-
transformed expression patterns of the genes in a cluster, forming an average expression
pattern that represents that cluster. The pattern is then treated as though it were a sin-
gle gene, meaning that we must compute its correlation with the pattern of every other
currently available object. Let’s walk through the process to cluster the genes in Table
6.2, using the similarities in Table MM6.2. First, find the two most similar genes in the
entire set of genes. Genes L and G are the most similar, because rLG � 1. Join these
together into a cluster, denoted [LG]. Cluster [LG] is added to the list of available
objects, and the single genes L and G are removed from the list. Now join the next two
most similar objects, using the procedure described earlier. (Note that in this case, the
average of L and G is equal to both L and G, so we are saved the job of computing new
correlations.) The most similar gene to the cluster [LG] is gene C, with rCG � rCL �
0.95. However, gene C and cluster [LG] are not the two most similar objects; rather,
genes C and E are, with rCE � 0.96. Thus, we join genes E and C to form cluster [EC].

At the next iteration, we need to know the correlation of each object with the average
log-transformed expression patterns of genes E and C: 0, 2.5, 3.29, 3.5, 3.29, 3. The cor-
relations of all available objects with this pattern representing [EC] are in Table MM6.3.

From Table MM6.3, we see that the object most similar to [EC] is cluster [LG], with
a correlation of 0.93. Gene D is even more similar to [LG], since rDG � 0.94. However,
the two most similar objects now are genes N and H, with rNH � 0.95. Therefore, we
join genes N and H to form cluster [NH]. We have now completed 3 iterations of the
hierarchical clustering algorithm. The entire clustering process for these 12 genes takes
11 iterations; the steps are summarized in Table MM6.4. Note that the final object cre-
ated is the clustering of all 12 genes shown in Figure 6.8.

The hierarchical clustering process can also be summarized in a dendrogram similar
to those discussed on pages 139–145. Figure MM6.1 shows the dendrogram for the
hierarchical clustering detailed in Table MM6.4 and Figure 6.8. Notice that genes L
and G are consolidated into a single node in the tree. The depth (from right to left) at
which a node connects two objects represents the similarity between them. At any node
that joins two branches, the top and bottom branches can be exchanged without chang-
ing the interpretation of the tree. Therefore, many different orderings of the leaves are
consistent with the branching structure of a particular dendrogram. Dendrograms are
used extensively in Chapter 7 to represent clusters.

Hierarchical clustering is the most popular method for finding trends in gene expres-
sion data, but there are several others. Another common method is the k-means cluster
algorithm, which tries to find the best partition of the entire set of genes into precisely 
k groups. Several software programs for clustering gene expression data with hierarchi-
cal, k-means, and other methods are freely available for academic use. You can also
experiment with clustering microarray data online. Each cluster algorithm may result in

MATH M I N UTES
clustering
software
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a different overall clustering of the data. Although there are mathematical methods for
evaluating the extent to which clusters agree with the input similarity measurements,
the last word in cluster evaluation belongs to the investigators who form and test
hypotheses based on the clusters.

MATH M I N UTE D ISCOVE RY QU ESTIONS
1. Compute the correlations between cluster [NH] and all other objects, form-

ing a table similar to Table MM6.3.
2. Explain why iteration 4 of the hierarchical clustering algorithm joins gene M

with cluster [NH].
3. What new correlations must be computed in iteration 5 of the hierarchical

clustering algorithm?
4. How many correlations must be computed to perform the first iteration of

hierarchical clustering in the DeRisi diauxic shift data?

Table MM6.4 Summary of the hierarchical clustering algorithm applied to the 12 genes 
in Table 6.2.

Two Most Similar Objects

Iteration Object 1 Object 2 Correlation New Object

1 L G 1.00 [LG]
2 E C 0.96 [EC]
3 N H 0.95 [NH]
4 M [NH] 0.95 [MNH]
5 [LG] D 0.94 [LGD]
6 [EC] [LGD] 0.94 [ECLGD]
7 I F 0.60 [IF]
8 J [ECLGD] 0.29 [JECLGD]
9 K [JECLGD] 0.19 [KJECLGD]

10 [KJECLGD] [IF] �0.12 [KJECLGDIF]
11 [MNH] [KJECLGDIF] �0.96 [MNHKJECLGDIF]

gene M
gene N
gene H
gene K
gene J
gene E
gene C
gene L
gene G
gene D
gene I
gene F

Figure MM6.1 Dendrogram of clustered genes from Table MM6.3 and Figure 6.8.

You begin reading DeRisi’s paper and are impressed that
it summarizes more than 43,000 expression ratios. Surely
you can find the answer you’re looking for in this much
data. In this experiment, DeRisi’s group grew two popula-
tions of yeast. The experimental cells gradually depleted the
glucose, while the control cells had ample glucose in their
flask (Figure 6.10). As indicated in the figure, aliquots

(small volumes) of cells were sampled from the glucose-
limited population of cells over the course of the experi-
ment. The resulting cDNA was labeled red and compared
to green cDNA produced from control cells with unlimited
glucose. You recognize the paper’s first figure as a “get
acquainted” figure that explains what microarrays are and
how to read them (Figure 6.11).
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