W e Y TG A How Do You Know if You Have Sampled Enough Cells?

A hidden assumption in the bar code study is that the proportion of each strain in a sam-
ple is the same as the proportion of the strain in the entire population at the time the sam-
ple is taken. If this assumption does not hold, the growth profiles of the 558 strains
cannot be accurately assessed. The validity of the assumption depends on how large the
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sample is, compared to the size of the population. For example, suppose a population of
10" cells contains an equal number of cells from each of 558 strains. If 10° cells (10%) are
sampled from the population, it is more likely that the sample contains an approximately
equal number of cells from each strain than if only 10° cells (1%) are sampled. If one
strain were to constitute only 1% of the population, a very small sample might miss the
strain completely, or get too few cells from the strain to be detected on a DNA microarray.

You can calculate the probability of a particular sampling outcome (i.e., getting a partic-
ular number of cells from each strain in a sample) using the multivariate hypergeometric
frequency function, a formula involving the sample size and number of cells from each
strain in the population. Specifically, suppose a population contains N cells from A differ-
ent strains, with 7, cells from strain 1, 7, cells from strain 2, . . . and 7, cells from strain M.
You can compute the probability that a random sample contains 4, cells from strain 1, 4,
cells from strain 2, . . . and £y, cells from strain A, with the hypergeometric formula:
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where Kis the sample size (i.e., K=k, + kb, + ... + k). For example, if a population

contains 100 cells from each of 3 different strains (a total of 300 cells), the probability
that a sample of 60 cells contains exactly 20 cells from each strain is
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In the hypergeometric formula, each pair of numbers in parentheses is a binomial
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(read “7 choose £7), which represents how many distinct sets of # cells of a particular
strain can be chosen from the 7 cells of that strain in the population. For example, with
n, = 100 and %, = 20,
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Many calculators, as well as various mathematical and statistical software programs,

coefficient

have a binomial coefficient function that can save you a lot of computation.

In a sample of 60 cells from a population of 300 cells, the ideal sample would contain
20 cells from each strain, in perfect agreement with the population proportions of 1/3
for each strain. Evaluating the binomial coefficients in the preceding formula results in
a probability of 0.017 of getting an ideal sample, that is, one that contains exactly
20 cells from each of the three strains. However, for practical purposes, we are satisfied
with getting close to 20 cells from each strain. Suppose we are willing to accept a devia-
tion of up to three cells from the ideal number (20 * 3) for each strain, corresponding
to a deviation of 3/60 = 1/20 = 0.05 from the ideal proportion (1/3 % .05). There are
37 different sampling outcomes that satisfy this criterion. (Can you identify all 37?)

You can find the probability of getting one of these 37 outcomes by computing the
probability of each outcome (using the hypergeometric formula) and adding the 37 prob-
abilities. The result of these calculations—that is, the probability that the sample pro-
portions are all within 0.05 of the population proportions—is approximately 0.47.



Table MM8.1 Probability that sample proportions are within a specified deviation
from 1/3, for sample sizes of 60,120, and 180 cells.

Probability
Deviation Sample 60 cells Sample 120 cells Sample 180 cells
0.025 0.113 0.345 0.502
0.05 0.470 0.766 0.954
0.075 0.649 0.954 0.998
0.1 0.887 0.995 0.999991
0.125 0.945 0.9997 =]

In other words, we have a 53% chance of getting a sample that differs from the ideal by
more than 3 cells in one or more strains.

To improve our chances of getting a good sample, we must sample more cells. Alter-
natively, we could relax our maximum deviation criterion, accepting a deviation of up
to 5 cells (20 = 5), for example. The probability that all strains are represented within a
given deviation from 1/3 is shown in Table MMS8.1 for three different sample sizes. The
deviation is given as a proportion of the sample size; the deviation in number of cells is
different for each sample size.

This table of probabilities shows that we should sample at least 180 cells from our popu-
lation of 300 cells to be 95.4% certain that the sample proportions will be 1/3 %+ 0.05 for
all three strains. However, if we were willing to accept errors as large as 0.125 (i.e., sample
proportions ranging from 0.208 to 0.458), a sample of 60 cells would probably do.

Now suppose we have a population containing 200 cells from strain 15 97 cells from
strain 2; and 3 cells from strain 3. In other words, the population is the same size as in
our previous example (300 cells), but strain 3 constitutes only 1% of the population.
What is the probability that a sample of 60 cells from this population contains at least
one cell from strain 3? There are 61 sampling outcomes that have no cells from strain 3.
By using the hypergeometric formula, you can sum the probabilities of these 61 out-
comes to find that the probability of completely missing strain 3 is 0.511. Therefore, the
probability that strain 3 is present in the sample of 60 cells is I — 0.511 = 0.489. Once
again, sampling more cells improves our chances of getting a good sample—in this case,
one in which a cell from strain 3 is present. Specifically, the probability that strain 3 is
present is 0.785 when 120 cells are sampled, and 0.937 when 180 cells are sampled.

For very large samples, it is difficult to compute probabilities with the hypergeomet-
ric frequency function, and they are often approximated using the normal distribution
(Math Minute 11.1). Whether exact or approximate, these probabilities show investiga-
tors that growth trends such as those in Figure 8.8 are not merely artifacts of the
sampling process.



